
Generalizing Lenses
A New Foundation for Bidirectional Programming

Daniel Wagner

June 13, 2014

History: a problem with databases

resultDB
query

History: a problem with databases

resultDB
query

new resultnew DB
query

History: a problem with databases

resultDB
query

new resultnew DB
query

result→ new result

History: a problem with databases

resultDB
query

new resultnew DB
reverse query

Bidirectional programming

Many other settings with similar problems, like

I parsing (in-memory structures ↔ serialization),

I software model transformations (diagrams ↔ code),

I user interfaces (connecting two widgets’ state), and

I sysadmin (custom configurations ↔ unified format).

In each setting,

I two pieces of data (henceforth, repositories) are related, and

I we would like to avoid writing two related transformations.

Dissatisfaction

Language-based research is centered on asymmetric lenses. But:

Asymmetry A canonical repository stores all information,

Misalignment Lenses have limited access to information
connecting old and new repositories, and

Performance Traversing entire repositories requires high
computation and memory resources.

. . . though the extensive syntax is a key feature to keep.

Contributions

Symmetric lenses are the first lens framework that:

I Gives both repositories equal status

I Provide a computable sequential composition

I Retain modular reasoning principles

Edit lenses extend symmetric lenses with:

I Explicit representation of and computation with changes

I Support for incremental operation

I Behavioral laws constraining update

A prototype implementation explores the problem of generating
change information.

Related work

Alignment Symmetry Performance Syntax

algebraic edits no
possibly, but
unexplored

not a goal

matching
mapping from holes

to holes
no

repository and
alignment

information both
processed

variants of most
AS-lens combinators

annotated
insertion, deletion,

modification
markers

no
alignment

information includes
repository

includes
diag ∈ X ↔ X×X

asymm. δ explicit alignments not a goal
edits include
repositories

via alternate
framework

symm. δ edits
yes, but equiv. not

explored
edits include
repositories

alternate
frameworks not

instantiated
const.
maint.

uninterpreted edits
yes; does not
require equiv.

no; all edits relative
to init

many primitives,
but no composition

symm.
state

very bad
yes; requires
equivalence

no
mostly domain

agnostic

edit lenses edits
yes; requires
equivalence

small edits support
incremental
operation

most standard
lenses, and

container map

green means satisfies the objective, red indicates some shortcomings

Other models of edits

I X × X (before and after)
I State-based lenses
X Very simple starting point

Not enough information about alignment

I X → X (extensional edit operation)
I Stevens’ algebraic study of delta lenses
X Models many behaviors

Difficult to recover intensional data

I category on X (collection of edits for each before/after pair)
I Diskin, et al’s delta lenses
X Very rich information about change

Very rich information about change

Modules

Keep the best features of each: collection of edits for easy
introspection + mapping to functions to cover many behaviors.

Module 〈X , ∂X ,�X , initX 〉 is:

I Set of values to be edited X

I Monoid of edits ∂X

I Homomorphism from edits to operations �X ∈ ∂X → X ⇀ X

I Default value initX is a technical detail; explanation later

∂ changes to
� apply

init initial value
⇀ partial function to

Monoids

Quick review: monoid means

I There is an identity 1

I and an associative binary operation (juxtaposition).

Homomorphisms f respect this structure.

f (1) = 1

f (m n) = f (m) f (n)

In particular, for edits: identity always succeeds and does nothing,
and edits can be run in sequence.

1 identity
m n m times n

Partiality

�X ∈ ∂X → X ⇀ X

Requiring totality forces you to include unnatural edits.

M , {1} ∪ {a 7→ b | a, b ∈ N}

With totality:

(a 7→ b) (b 7→ c)� a = c

(a 7→ b) (b 7→ c)� b = c

. . . must expand M to accommodate this.
With partiality, can define

(a 7→ b) (b 7→ c) , a 7→ c

, is defined equal to
7→ becomes

Theorem: Partiality is an illusion.

Partiality

�X ∈ ∂X → X ⇀ X

Why not just do nothing instead of failing?

M , {1} ∪ {a 7→ b | a, b ∈ N}

With totality:

(a 7→ b) (b 7→ c)� a = c

(a 7→ b) (b 7→ c)� b = c

. . . must expand M to accommodate this.
With partiality, can define

(a 7→ b) (b 7→ c) , a 7→ c

, is defined equal to
7→ becomes

Theorem: Partiality is an illusion.

Partiality

�X ∈ ∂X → X ⇀ X

Requiring totality forces you to include unnatural edits.

M , {1} ∪ {a 7→ b | a, b ∈ N}

With totality:

(a 7→ b) (b 7→ c)� a = c

(a 7→ b) (b 7→ c)� b = c

. . . must expand M to accommodate this.
With partiality, can define

(a 7→ b) (b 7→ c) , a 7→ c

, is defined equal to
7→ becomes

Theorem: Partiality is an illusion.

Partiality

�X ∈ ∂X → X ⇀ X

Requiring totality forces you to include unnatural edits.

M , {1} ∪ {a 7→ b | a, b ∈ N}

With totality:

(a 7→ b) (b 7→ c)� a = c

(a 7→ b) (b 7→ c)� b = c

. . . must expand M to accommodate this.
With partiality, can define

(a 7→ b) (b 7→ c) , a 7→ c

, is defined equal to
7→ becomes

Theorem: Partiality is an illusion.

Data structures

Common approach to implementing complex data structures:

τ := 0 | 1 | X | τ + τ | τ × τ | µX. τ | τ → τ

Try to design edit modules for each of these types.

Does not work well.

Data structures

Common approach to implementing complex data structures:

τ := 0 | 1 | X | τ + τ | τ × τ | µX. τ | τ → τ

Try to design edit modules for each of these types.

Does not work well.

Data structures

Common approach to implementing complex data structures:

τ := 0 | 1 | X | τ + τ | τ × τ | µX. τ | τ → τ

Try to design edit modules for each of these types.

Does not work well.

Products

How to edit X × Y ? Either edit X or edit Y .

Cats × Dogs

(
,

)  ,



 ,

  ,



Products

How to edit X × Y ? Either edit X or edit Y .

Cats × Dogs

(
,

)  ,



 ,

  ,


left(+hat)

Products

How to edit X × Y ? Either edit X or edit Y .

Cats × Dogs

(
,

)  ,



 ,

  ,


right(+scarf)

Sums

Cats Dogs+

Sums

Cats Dogs+

stayL(+hat)

Sums

Cats Dogs+

stayR(+scarf)

Sums

Cats Dogs+

switchLR(1)

Sums

Cats Dogs+

switchLR(+scarf)

Sums

Cats Dogs+

switchLL(1)

Sums, recap

Six kinds of sum edit for X + Y :

stayL(dx)
switchLL(dx)
switchRL(dx)

stayR(dy)
switchLR(dy)
switchRR(dy)

Inductive types

First idea: ∂(µX. τ) ' ∂(τ [µX. τ/X]).
For lists with elements from module A, i.e. µX. 1 + A× X :

stayL() Do nothing to the currently empty list.

switch L() Delete the entire list.

stayR(left(da)) Modify the head of the list.

stayR(right(dx)) Modify the tail of the list.

switch R() Replace the current list.

No way to insert or delete in the middle of the list.
Information never migrates; can’t swap list elements.

τ [X/Y] replace Y by X in τ

More baroque approaches have other problems.

Inductive types

First idea: ∂(µX. τ) ' ∂(τ [µX. τ/X]).
For lists with elements from module A, i.e. µX. 1 + A× X :

stayL() Do nothing to the currently empty list.

switch L() Delete the entire list.

stayR(left(da)) Modify the head of the list.

stayR(right(dx)) Modify the tail of the list.

switch R() Replace the current list.

No way to insert or delete in the middle of the list.
Information never migrates; can’t swap list elements.

τ [X/Y] replace Y by X in τ

More baroque approaches have other problems.

Containers

A standard container 〈I ,P〉 is

I A set of shapes I and

I For each shape i , a set Pi of positions.

An X-instance 〈i , f 〉 of container 〈I ,P〉 is

I A shape i ∈ I and

I A function f ∈ Pi → X .

Lists as containers

I , N
Pi , {0, . . . , i − 1}

The list [3, 6, 2] is represented as the pair〈 3, λp. if p = 0 then 3
elif p = 1 then 6
elif p = 2 then 2

〉

N natural numbers

Container restrictions

Three important changes:

I Module of shape edits

I Universe of positions PU

I Partial order ≤ on shapes (with P monotone)

Container module

∂ 〈I ,P〉X , {mod(p,dx) | p ∈ PU , dx ∈ ∂X}
∪ {ins(di) | di i ≥ i whenever defined}
∪ {del(di) | di i ≤ i whenever defined}
∪ {swap(di , f) | fi ∈ Pdi i ' Pi whenever defined}
∪ {fail}

' bijection to

Other results: composition

First in-depth study of machinery needed for sequential
composition in the presence of symmetry:

I Complements enable computable composition

I Equality is too fine a distinction, but a coarser equivalence
relation identifies j ; (k ; `) and (j ; k); `

I All lens combinators are proven to respect equivalence classes

I An induced category whose arrows are lenses

Other results: algebraic study

For symmetric lenses:

I Symmetric monoidal product structure

I Symmetric monoidal sum structure

I Non-existence of true products and sums

I Projections (natural up to indexing)

I Injections (non-natural)

I Iterator lenses, combined folds and unfolds on inductive types

I Functorial container mapping lens

Other results: algebraic study

For edit lenses:

I Symmetric monoidal product structure

I Tensor sum structure which is bifunctorial and commutative
(up to init bias) but not associative

I Functorial container mapping lens

Partition, reshaping (not motivated by algebraic considerations)

Other results: miscellaneous

I Asymmetric lenses can be lifted to symmetric lenses

I Symmetric lenses + change detection algorithms can be lifted
to edit lenses

I Monoid homomorphism laws refine state-based behavioral laws

I Prototype implementation explores the generation of
alignment information

Hyperlenses

Bidirectional transformations:

(X + Y)? partition X ? × Y ? π1 Y ?

Multi-directional transformations:

N?append

N?

N? length N

sum N

−? list

Edit parsing

Bach, 1675
Hayn, 1732

Beethoven, 1770

Bach, 1685
Haydn, 1732

Beethoven, 1770

(Bach, 1675)

(Beethoven, 1770)

(Hayn, 1732)

cons

cons

cons

nil

(Bach, 1685)

(Beethoven, 1770)

(Haydn, 1732)

cons

cons

cons

nil

Delete 8 14
Insert 8 “85\nHayd”

mod(0, right(1685))

mod(1, left(Haydn))

Conclusion

Tackled four important problems:

Symmetry, treating both repositories equally,

Alignment, tracking changes to improve updates,

Performance, processing only the data that matters, and

Syntax, instantiating the framework with many lenses,

an important step for the maintenance of replicated data.

Realistic assumption: symmetry

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Mahler 1860
Stevens 1948

Handling lists

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Handling lists

Mozart Austria
Liszt Czech R.
Mahler England
Stevens missing

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Alignment

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Alignment

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Alignment

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart 1756
Mahler 1860
Stevens 1948

Alignment failure modes

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart Austria
Liszt Czech R.
Mahler England
Stevens missing

Alignment failure modes

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart Austria
Liszt missing
Mahler missing
Stevens England

Alignment failure modes

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart Austria
Mahler Czech R.
Stevens England

Mozart 1756
Liszt 1811
Mahler 1860
Stevens 1948

Mozart England
Liszt Austria
Mahler <<loop>>

Stevens Austria

Strange, but true

Alignment What Changed

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Stevens 1948 insert Mahler

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Maller 1860
Stevens 1948

correct typo

Mozart 1756
Mahler 1860
Stevens 1948

Mozart 1756
Liszt 1811
Stevens 1948

replace a composer

Mozart 1756
Mahler 1860
Islam 1948

Mozart 1756
Mahler 1860
Stevens 1948

name change

Bach Germany
Liszt Hungary
Stevens England

Bach Germany
Liszt Hungary
Stevens England

replace Bach with son

Future work

I Hyperlenses: multi-repository lenses

I Transforming string edits into structured edits

I Further exploration of the possible edit lenses

I More breadth in the algebraic study of edit lenses

I Many ideas for applications

I Others: variations of the behavioral laws, typed edits,
asymmetric edit lenses, connections between various lens
frameworks, automatic weight function discovery

Potential application areas

I Filesystem synchronization

I Text editing (decoding, parsing, highlighting)

I GUI internals

I Extensions of Boomerang, Augeas, Forest

I Many-directional spreadsheet

I Relational database

I Bidirectional Datalog

I Server/client applications (e.g. on mobile phones)

I Software model transformations

