
Generalizing Lenses

Daniel Wagner

A Dissertation Proposal

in

Computer Science

2013

ABSTRACT

Generalizing Lenses

Daniel Wagner

Benjamin C. Pierce, Advisor

Bidirectional situations are all around us: we synchronize bookmarks, keep clones of our data
on our mobile devices, edit collaboratively, use GUIs to visualize and modify chunks of our data,
and more. In these situations, we must write programs that translate back and forth between
two data sets which potentially use different storage formats and sometimes even record differing
characteristics of the data. The framework of lenses [9] aids in the creation and maintenance of
these translations by allowing the programmer to write a single program which can be interpreted
as both a forward and backward translation.

The basic lens framework, however, makes some assumptions about how the transformations
they describe will be used:

1. One data set is less informative than the other, and can be completely recreated just by
examining the more informative data set.

2. It is reasonable to transmit and traverse entire data sets.

3. There are just two data sets being synchronized (or at least, if there are many data sets, they
can reasonably be linked pairwise).

For some decentralized applications, there are two data sets which share some data, but which also
each have their own unshared data; because there is no master data set, assumption (1) is violated.
For large data sets, it is reasonable to hope that one could store and transmit small descriptions
of recent changes (e.g. transmitting a diff rather than an entire updated file), which violates
assumption (2). Finally, a variant of spreadsheets (where formulas for computing cell values are
made bidirectional) can be understood as many data sets—one for each cell—with intricate webs
of connections between them, violating assumption (3).

We will describe the generalized lens frameworks of symmetric lenses, which relax assumption
(1), and edit lenses, which relax assumption (2). We propose a novel lens framework based on local
constraint propagation which relaxes assumption (3).

ii

Contents

1 Introduction 1

2 Finished work 3
2.1 Background . 4
2.2 Limitations . 4
2.3 Symmetric lenses . 5
2.4 Edit lenses . 9

2.4.1 Building edit languages . 10
2.4.2 Complements . 10
2.4.3 Formal definition . 12

3 Spreadsheets 16
3.1 Simple example . 17
3.2 Goal statement . 18
3.3 Simplistic solutions . 18

3.3.1 Spreadsheets . 19
3.3.2 Tree topology . 19
3.3.3 Linear constraints . 20
3.3.4 Biased graph combination . 21

3.4 Design axes . 23
3.4.1 Sources of ambiguity . 24
3.4.2 Sources of insolubility . 25
3.4.3 Other difficulties . 26

3.5 Timeline . 27

4 Related work 28
4.1 Symmetric lenses . 29
4.2 Edit lenses . 30
4.3 Spreadsheets . 30

iii

Chapter 1

Introduction

1

As the electronic world grows increasingly interconnected, it grows increasingly common to need
good tools for synchronizing replicated data. In many cases, the data stores being replicated are not
identical—each store is tailored to the device or application that is using the replica. Traditional
tools for maintaining synchrony between differing data formats provide separate transformation
tools for each pair of formats. However, as the formats and transformations grow complex, main-
taining separate tools can grow more difficult and error-prone.

The lens framework of [9] attempts to address this problem by giving a language of transforma-
tions that can be interpreted bidirectionally : a lens between data formats A and B describes both a
transformation from A to B and a transformation from B to A. Recent work has developed some
nice tooling for lenses, but there remain many use cases that call for generalizations of lenses. We
will discuss three such situations in this document.

One core assumption of the lens framework is that one of the two replicas being synchronized
is “canonical”: it stores enough information to reconstruct the other replica in its entirety. In
many cases, this is untrue: the two replicas have some shared information, but each also has some
information that is not shared with the other. Section 2.3 briefly discusses a symmetric variant
of lenses that relaxes this assumption; the complete dissertation will also discuss in-depth the
additional machinery needed for lens equivalence, the algebraic structure of symmetric lenses, and
a syntax for writing symmetric lenses that includes rich support for lists and generic containers.

A second core assumption is that lenses can operate on entire replicas as a single object. For
large data sets, this can be a problem: one may not wish to transmit entire replicas during synchro-
nization, but instead short descriptions of what has changed since the last synchronization point.
Section 2.4 briefly discusses the formalism needed to generalize lenses so that they operate on edits;
the complete dissertation will also discuss (analogously to the discussion for symmetric lenses) edit
lens equivalence, algebraic structure, and a syntax for edit lenses that includes some support for
list and generic container operations.

Finally, the lens framework focuses itself on the problem of synchronizing two (potentially large)
replicas at a time. The main new work proposed in this document is to produce a generalization
of lenses that can synchronize very many (potentially quite small and loosely-related) replicas.
For concreteness, imagine a multi-directional spreadsheet: each cell is a replica. Some cells are
computed from others; these computations are the transformations that we would like to bidirec-
tionalize. Section 3 discusses the major goals of this work as well as some simple solutions that we
have already explored and the major challenges we foresee.

In the remainder of the document, we will formally introduce the lens framework (2.1), briefly
discuss the formalisms of symmetric and edit lenses (2.3 and 2.4), introduce the hyperlens multi-
directional spreadsheet project’s goals (3.2), challenges (3.4), and timeline (3.5), and give an
overview of related work (4).

2

Chapter 2

Finished work

3

2.1 Background

To set the stage, let’s review one standard definition of asymmetric lenses. Suppose X is some set
of source structures (say, the possible states of a database) and Y a set of target structures (views
of the database). An asymmetric state-based lens from X to Y has two components:

get ∈ X → Y
put ∈ Y ×X → X

The get component is the forward transformation, a total function from X to Y . The put component
takes an old X and a modified Y and yields a correspondingly modified X. These components must
obey two “round-tripping” laws for every x ∈ X and y ∈ Y :

put (get x) x = x (GetPut)

get (put y x) = y (PutGet)

It is also useful to be able to create an element of X given just an element of Y , with no “original
x” to put it into; in order to handle this in a uniform way, each lens is also equipped with a function
create ∈ Y → X, and we assume one more axiom:

get (create y) = y (CreateGet)

2.2 Limitations

Figure 2.1 gives a simple example of a pair of repositories and operations on those repositories that
the asymmetric, state-based lenses above do not model well, along with the behavior that we desire
from our symmetric and edit lens generalizations. In part (a), we see the initial replicas, which are
in a synchronized state. On the left, the replica is a list of records describing composers’ birth and
death years; on the right, a list of records describing the same composers’ countries of origin. Of
particular relevance here is that the right-hand repository contains countries, which do not appear
in the left-hand repository—this means we cannot write a get function from left to right—while the
left-hand repository contains dates, which do not appear in the right-hand repository—meaning we
also cannot write a get function from right to left.

In part (b), the user interacting with the left-hand replica decides to add a new composer,
Monteverdi, at the end of the list. The lens connecting the two replicas now converts this into a
corresponding change that adds Monteverdi to the right-hand replica, shown in part (c). Note that
the translation includes the name component but leaves the country component with its default
value, “?country?.” This is the best it can do, since the left-hand replica doesn’t mention countries.
Later, an eagle-eyed editor notices the missing country information and fills it in, at the same time
correcting a spelling error in Schumann’s name, as shown in (d). In part (e), we see that the lens
discards the country information when translating from right to left, but propagates the spelling
correction.

In some extraordinary cases, there may be many reasonable ways to keep the two repositories
synchronized. Consider part (f) of Figure 2.1, where the left-hand replica ends up with a row for
Monteverdi at the beginning of the list, instead of at the end. There are at least two reasonable user
intentions that could lead to this effect: either the user could mean to delete the old Monteverdi

4

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

(a) initial replicas

(b) a new composer is added to one replica

(c) the lens adds the new composer to the other replica

(d) the curator makes some corrections

(e) the lens transports only the relevant part of the corrections

(f) two different edits with the same effect on the left

Figure 2.1: The desired behavior of a simple lens.

record and insert a brand new one (which happens to have similar data to the old record), or
the user could mean to rearrange the order of the records. The upper row shows how the other
repository should change in the former situation (it leaves Monteverdi with a default country), while
the lower row shows what should happen in the latter situation (it reorders the other repository’s
records, preserving all the information associated with Monteverdi).

2.3 Symmetric lenses

Lenses can be generalized from the asymmetric presentation above—where one of the structures
is always a “view” of the other—to a fully symmetric version where each of the two structures
may contain information that is not present in the other. Although symmetric variants of lenses
have been studied [15, 24, 4], they all lack a notion of sequential composition of lenses, a significant
technical and practical limitation. The extra structure needed to support composition is nontrivial;
in particular, constructions involving symmetric lenses need to be proved correct modulo a notion of
behavioral equivalence. However, once that structure is in place, we find that there is a rich algebra

5

on the space of lenses, which can be used as the theoretical basis for a language of symmetric lenses.
The key step toward symmetric lenses is the notion of complements. The idea dates back to a

famous paper in the database literature on the view update problem [1] and was adapted to lenses
in [2] (and, for a slightly different definition, [14]), and it is quite simple. If we think of the get
component of a lens as a sort of projection function, then we can find another projection from
X into some set C that keeps all the information discarded by get . Equivalently, we can think
of get as returning two results—an element of Y and an element of C—that together contain all
the information needed to reconstitute the original element of X. Now the put function doesn’t
need a whole x ∈ X to recombine with some updated y ∈ Y ; it can just take the complement
c ∈ C generated from x by the get , since this will contain all the information that is missing from
y. Moreover, instead of a separate create function, we can simply pick a distinguished element
missing ∈ C and define create(y) as put(y,missing).

So far, this perspective has retained the assumption that elements of X have richer structure
than elements of Y ; hence, the complement need only store the extra rich parts of X. For symmetry,
we will lose this assumption, and allow the complement set C to contain information about both
X elements and Y elements. As a result, both the get and put functions may need to inspect
and update the complement. It will be the responsibility of those functions to decompose the
complement into the “private information from X” and the “private information from Y ”; then we
expect that get will read the part about Y and write the part about X and put will read the part
about X and write the part about Y . Thus, our new types for get and put are

get ∈ X × C → Y × C

put ∈ Y × C → X × C

Note that the type is just “lens from X to Y ”: the set C is an internal component, not part of the
externally visible type. In symbols, Lens(X,Y) = ∃C. {missing : C, get : X × C → Y × C, put :
Y × C → X × C}.

Now that everything is symmetric, the get / put distinction is not helpful, so we rename the
functions to putr and putl . This brings us to our core definition.

Definition 1 (Symmetric lens). A lens ` from X to Y (written ` ∈ X ↔ Y) has three parts: a set
of complements C, a distinguished element missing ∈ C, and two functions

putr ∈ X × C → Y × C

putl ∈ Y × C → X × C

satisfying the following round-tripping laws:

putr(x, c) = (y, c′)

putl(y, c′) = (x, c′)
(PutRL)

putl(y, c) = (x, c′)

putr(x, c′) = (y, c′)
(PutLR)

When several lenses are under discussion, we use record notation to identify their parts, writing
`.C for the complement set of `, etc.

6

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

dates only here countries only here

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

add an extra structure (the "complement") that
stores the "private information" from both sides

(a) Initial replicas (b) Initial complement

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

1797-1828
1810-1856

Austria
Germany

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

each transformation propagates
updates both to the target artifact

and to the complement...

...using the complement
to fill in information not
available in the source

(c) One replica edited (d) Propagating the edit

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi,
unknown

1797-1828
1810-1856
1567-1643

Austria
Germany

?country?

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

Schubert, 1797-1828
Schumann, 1810-1856

Schubert, Austria
Schumann, Austria

Monteverdi, unknown

1797-1828
1810-1856
1567-1643

Austria
Germany
Italy

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

(e) Second replica is edited (f) This change is propagated

Figure 2.2: Behavior of a symmetric lens

The force of the PutRL and PutLR laws is to establish some “consistent” or “steady-state”
triples (x, y, c), for which puts of x from the left or y from the right will have no effect—that is,
will not change the complement. The conclusion of each rule has the same variable c′ on both
sides of the equation to reflect this. We will use the equation putr(x, c) = (y, c) to characterize
the steady states. In general, a put of a new x′ from the left entails finding a y′ and a c′ that
restore consistency. Additionally, we often wish this process to involve the complement c from the
previous steady state; as a result, it can be delicate to choose a good value of missing . This value
can often be chosen compositionally; each of our primitive lenses and lens combinators specify one
good choice for missing .

Examples Figure 2.2 shows how this model might be instantiated to synchronize the repositories
discussed earlier in Section 2.2. The complement (b) contains all the information that is discarded
by both puts—all the dates from the left-hand structure and all the countries from the right-hand
structure. (It can be viewed as a pair of lists of strings, or equivalently as a list of pairs of strings;
the way we build list lenses later actually corresponds to the latter.) If we add a new record to the
left hand structure (c) and use the putr operation to propagate it through the lens (d), we copy the
shared information (the new name) directly from left to right, store the private information (the
new dates) in the complement, and use a default string to fill in both the private information on the

7

right and the corresponding right-hand part of the complement. If we now update the right-hand
structure to fill in the missing information and correct a typo in one of the other names (e), then
a putl operation will propagate the edited country to the complement, propagate the edited name
to the other structure, and use the complement to restore the dates for all three composers.

Viewed more abstractly, the connection between the information about a single composer in the
two tables is a lens from X × Y to Y × Z, with complement X × Z—let’s call this lens e. Its putr
component is given (x, y) as input and has (x′, z) in its complement; it constructs a new complement
by replacing x′ by x to form (x, z), and it constructs its output by pairing the y from its input and
the z from its complement to form (y, z). The putl component does the opposite, replacing the z
part of the complement and retrieving the x part. Then the top-level lens in Figure 2.2—let’s call
it e?—abstractly has type (X × Y)? ↔ (Y × Z)? and can be thought of as the “lifting” of e from
elements to lists.

There are several plausible implementations of e?, with slightly different behaviors when list
elements are added and removed—i.e., when the input and complement arguments to putr or putl
are lists of different lengths. One possibility is to take e?.C = (e.C)? and maintain the invariant
that the complement list in the output is the same length as the input list. When the lists in
the input have different lengths, we can restore the invariant by either truncating the complement
list or padding it with e.missing . For example, taking X = {a, b, c, . . .}, Y = {1, 2, 3, . . .}, Z =
{A,B,C, . . .}, and e.missing = (m,M), and writing 〈a, b, c〉 for the sequence with the three elements
a, b, and c, we could have:

putr(〈(a, 1)〉 , 〈(p, P), (q,Q)〉)
= putr(〈(a, 1)〉 , 〈(p, P)〉) (truncating)
= (〈(1, P)〉 , 〈(a, P)〉)

putr(〈(a, 1), (b, 2)〉 , 〈(a, P)〉)
= putr(〈(a, 1), (b, 2)〉 , 〈(a, P), (m,M)〉) (padding)
= (〈(1, P), (2,M)〉 , 〈(a, P), (b,M)〉)

Notice that, after the first putr , the information in the second element of the complement list (q,Q)
is lost. The second putr creates a brand new second element for the list, so the value Q is gone
forever; what’s left is the default value M .

Figure 2.3 illustrates another use of symmetric lenses. The structures in this example are lists
of categorized data; each name on the left is either a composer (tagged inl) or an author (tagged
inr), and each name on the right is either a composer or an actor. The lens under consideration
will synchronize just the composers between the two lists, leaving the authors untouched on the
left and the actors untouched on the right. The synchronized state (a) shows a complement with
two lists, each with holes for the composers. If we re-order the right-hand structure (b), the change
in order will be reflected on the left by swapping the two composers. Adding another composer on
the left (c) involves adding a new hole to each complement; on the left, the location of the hole is
determined by the new list, and on the right it simply shows up at the end. Similarly, if we remove
a composer (d), the final hole on the other side disappears.

Abstractly, to achieve this behavior we need to define a lens comp between (X + Y)? and
(X + Z)?. To do this, it is convenient to first define a lens that connects (X + Y)? and X? × Y ?;
call this lens partition. The complement of the partition is a list of booleans telling whether the
corresponding element of the left list is an X or a Y . The putr function is fairly simple: we separate
the (X + Y) list into X and Y lists by checking the tag of each element, and set the complement

8

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

inr(Clooney)
inl(Schumann)
inr(Hanks)

inl(Beethoven)
inr(Ford)

inl(?)
inr(Kerouac)
inr(Tolstoy)

inl(?)

inr(Clooney)
inl(?)

inr(Hanks)
inl(?)

inr(Ford)

inl(Beethoven)
inr(Kerouac)
inr(Tolstoy)
inl(Schumann)

inl(Beethoven)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(Schumann)

inl(?)
inr(Kerouac)
inr(Tolstoy)

inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(?)

(a) Initial replicas (b) Alphabetizing the right

inl(Beethoven)
inr(Kerouac)
inl(Chopin)
inr(Tolstoy)
inl(Schumann)

inl(Beethoven)
inr(Clooney)
inr(Ford)
inr(Hanks)
inl(Chopin)
inl(Schumann)

inl(?)
inr(Kerouac)

inl(?)
inr(Tolstoy)

inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)
inl(?)
inl(?)

inr(Kerouac)
inl(Chopin)
inr(Tolstoy)
inl(Schumann)

inl(Chopin)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(Schumann)

inr(Kerouac)
inl(?)

inr(Tolstoy)
inl(?)

inl(?)
inr(Clooney)
inr(Ford)
inr(Hanks)

inl(?)

(c) Inserting Chopin on the left (d) Deleting Beethoven from the left

Figure 2.3: Synchronizing lists of sums

to exactly match the tags. For example:

putr(〈inl a, inl b, inr 1〉 , c) = ((〈a, b〉 , 〈1〉), 〈false, false, true〉)
putr(〈inl a, inr 1, inl b〉 , c) = ((〈a, b〉 , 〈1〉), 〈false, true, false〉)

These examples demonstrate that putr ignores the complement entirely, fabricating a completely
new one from its input. The putl function, on the other hand, relies entirely on the complement
for its ordering information. When there are extra entries (not accounted for by the complement),
it adds them at the end. Consider taking the output of the second putr above and adding c to the
X list and 2 to the Y list:

putl((〈a, b, c〉 , 〈1, 2〉), 〈false, true, false〉) =
(〈inl a, inr 1, inl b, inl c, inr 2〉 ,
〈false, true, false, false, true〉)

The putl fills in as much of the beginning of the list as it can, using the complement to indicate
whether to draw elements from X? or from Y ?. (How the remaining X and Y elements are
interleaved is a free choice, not specified by the lens laws, since this case only arises when we are
not in a round-tripping situation. The strategy shown here, where all new X entries precede all
new Y entries, is just one possibility.)

Given partition, we can obtain comp by composing three lenses in sequence: from (X +Y)? we
get to X? × Y ? using partition, then to X? ×Z? using a variant of the lens e discussed above, and
finally to (X + Z)? using a “backwards” partition.

2.4 Edit lenses

The two frameworks discussed, asymmetric state-based lenses and symmetric state-based lenses,
are both somewhat “extensional”. That is: the put functions have access only to extensional

9

information about the states of the repository before and after any user changes. As shown in (f) of
Figure 2.1, this information is not always enough to determine a best modification to the unchanged
repository to restore synchrony: one wants “intentional” information about how a change was made
in addition to the effect that change had. Additionally, the description of what has changed since
the last synchronization point can often be represented much more compactly than the new value
of the repository. The goal of edit lenses is to address these two concerns.

We do not address the question of where these edits come from or who decides, in cases like part
(f), which of several possible edits is intended. As argued in [2], answers to these questions will tend
to be intertwined with the specifics of particular editing and/or diffing tools and will tend to be
messy, heuristic, and domain-specific—unpromising material for a foundational theory. Rather, our
aim is to construct a theory that shows how edits, however generated, can be translated between
replicas of different shapes.

Below, we discuss how to build an edit lens synchronizing the data structures in the introductory
example in Figure 2.1, paralleling the discussion of symmetric lenses. The primary difference is
that each lens must also be associated with the set of edits that it knows how to translate. In the
following, we will discuss how to build this association compositionally; the role that complements
play in edit lenses; and the formal definition of edit lenses.

2.4.1 Building edit languages

As with symmetric lenses, we will build our edit lens between (X×Y)∗ and (X×Z)∗ compositionally—
that is, the whole lens should have the form `∗, where ∗ is a “list mapping” lens combinator and
` itself is a product `1 × `2 of a lens `1 ∈ X → X that translates composer edits verbatim, while
`2 ∈ Y → Z is a “disconnect” lens that maps every edit on either side to a trivial identity edit on
the other side.

In analogous fashion, the edit languages for the top-level structures will be constructed compo-
sitionally. The set of edits for structures of the form (X×Y)∗, written ∂((X×Y)∗), will be defined
together with the list constructor ∗. Its elements will have the form ins(i) where i is a position,
del(i), reorder(i1, . . . , in) where i1, . . . , in is a permutation on positions (compactly represented, e.g.
as a branching program), and mod(p,dv), where dv ∈ ∂(X × Y) is an edit for X × Y structures.
Pair edits dv ∈ ∂(X × Y) have the form ∂X × ∂Y , where ∂X is the set of edits to composers and
∂Y is the set of edits to dates. Finally, both ∂X and ∂Y are sets of primitive “overwrite edits”
that completely replace one string with another, together with an identity edit 1 that does nothing
at all; so ∂X can be just {()}+ X (with 1 = inl ()) and similarly for Y and Z.

Our lens `∗ will consist of two components—one for transporting edits from the left side to the
right, written (`∗).V ∈ ∂(X × Y)∗ → ∂(X ×Z)∗,1 and another for transporting edits from right to
left, written (`∗).W ∈ ∂(X × Z)∗ → ∂(X × Y)∗.

2.4.2 Complements

We sometimes need lenses to have a little more structure than this simple example suggests. To see
why, consider defining a partitioning lens p between the sets ∂((X+Y)∗) and ∂(X∗×Y ∗). Figure 2.4
demonstrates the behavior of this lens. In part (a), we show the original replicas: on the left, a
single list that intermingles authors and composers (with inl/inr tags showing which is which), and

1The symbol V is pronounced “put an edit through the lens from left to right,” or just “put right.” It is the
edit-analog of the putr function.

10

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Tolstoy

inl, inr, inr, inl

(a) the initial replicas: a tagged list of composers and authors on the left; a pair of lists on the
right; a complement storing just the tags

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inl

(1, (ins(2); mod(2, “Salinger”)))

(b) an element is added to one of the partitions

inl(Schumann)
inr(Kerouac)
inr(Salinger)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inr, inl

ins(3); mod(3, inr(“Salinger”))

(c) the complement tells how to translate the index

Figure 2.4: A lens with complement.

11

on the right a pair of homogeneous (untagged) lists, one for authors and one for composers. Now
consider an edit, as in (b), that inserts a new element somewhere in the author list on the right. It
is clear that we should transport this into an insertion on the left replica, but where, exactly, should
we insert it? If the W function is given just an insertion edit for the homogeneous author list and
nothing else, there is no way it can translate this edit into a sensible position in the combined list
on the left, since it doesn’t know how the lists of authors and composers are interleaved on the left.

The solution is to store a complement off to the side, recording the tags (inl or inr) from the
original, intermingled list, and pass this list as an extra argument to translation. We then enrich
the types of the edit translation functions to accept a complement and return a new complement,
so that

p.V ∈ ∂((X + Y)∗)× C → ∂(X∗ × Y ∗)× C

and
p.W ∈ ∂(X∗ × Y ∗)× C → ∂((X + Y)∗)× C.

Part (c) demonstrates the use (and update) of the complement when translating the insertion.
Note that the complement stores just the inl/inr tags, not the actual names of the authors and

composers in the left-hand list. In general, the information stored in C will be much smaller than
the information in the replicas; indeed, our earlier example illustrates the common case in which C
is the trivial single-element set Unit . The translation functions manipulate just the complements
and the edits, which are also small compared to the size of the replicas.

2.4.3 Formal definition

A key design decision in our formulation of edit lenses is to separate the description of edits from
the action of applying an edit to a state. This separation is captured by the standard mathematical
notions of monoid and monoid action.

Definition 2. A monoid is a triple 〈M, ·M ,1M 〉 of a set M , an associative binary operation ·M ∈
M ×M →M , and a unit element 1M ∈M — that is, with ·M and 1M such that

x ·M (y ·M z) = (x ·M y) ·M z

1M ·M x = x = x ·M 1M .

When no confusion results, we use M to denote both the set and the monoid, drop subscripts
from · and 1, and write mn for m · n.

The unit element represents a “change nothing” edit. Multiplication of edits corresponds to
packaging up multiple edits into a single one representing their combined effects (this might be
useful, for example, for offline editing).

Modeling edits as monoid elements gives us great flexibility in concrete representations. The
simplest edit language is a free monoid whose elements are just words over some set of primitive
edits and whose multiplication is concatenation. However, it may be useful to put more structure on
edits, either (a) to allow more compact representations or (b) to capture the intuition that edits to
different parts of a structure do not interfere with each other and can thus be applied in any order.
The monoid framework can also accommodate more abstract notions of edit. For example, the set
of all total functions from a set X to itself forms a monoid, where the multiplication operation is
function composition. This is essentially the form of edits considered by Stevens [24]. We mostly
focus on the simple case where edit languages are free monoids. Laws can be added to the product
and sum lens constructions, and possibly for lists and general containers as well.

12

Definition 3. Given a monoid M and a set X, a monoid action on M and X is a partial function
� ∈M ×X ⇀ X satisfying two laws:

1� x = x

(m · n)� x = m� (n� x)

As with monoid multiplication, we often elide the monoid action symbol, writing mx for m�x.
In standard mathematical terminology, a monoid action in our sense might instead be called a
“partial monoid action,” but since we always work with partial actions we find it convenient to
drop the qualifier.

A bit of discussion of partiality is in order. Multiplication of edits is a total operation: given
two descriptions of edits, we can always find a description of the composite actions of doing both
in sequence. On the other hand, applying an edit to a particular state may sometimes fail. This
means we need to work with expressions and equations involving partial operations. As usual, any
term that contains an undefined application of an operation to operands is undefined—there is no
way of “catching” undefinedness. An equation between possibly undefined terms (e.g., as in the
definition above) means that if either side is defined then so is the other, and their values are equal
(Kleene equality).

Why deal with failure explicitly, rather than keeping edit application total and simply defining
our monoid actions so that applying an edit in a state where it is not appropriate yields the same
state again (or perhaps some other state)? One reason is that it seems natural to directly address
the fact that some edits are not applicable in some states, and to have a canonical outcome in all
such cases. A more technical reason is that, when we work with monoids with nontrivial equations,
making inapplicable edits behave like the identity is actually wrong.2

However, although the framework allows for the possibility of edits failing, we still want to know
that the edits produced by our lenses will never actually fail when applied to replica states arising
in practice. This requirement, corresponding to the totality property of previous presentations of
lenses [6], is formalized and proven. In general, we adopt the design principle that partiality should
be kept to a minimum; this simplifies the definitions.

It is convenient to bundle a particular choice of monoid and monoid action, plus an initial
element, into a single structure:

Definition 4. A module is a tuple 〈X, initX , ∂X, �X〉 comprising a set X, an element initX ∈ X,
a monoid ∂X, and a monoid action �X of ∂X on X.

If X is a module, we refer to its first component by either |X| or just X, and to its last
component by � or simple juxtaposition.

2Here is a slightly contrived example. Suppose that the set of states is natural numbers and that edits have the
form (x 7→ y), where the intended interpretation is that, if the current state is x, then the edit yields state y. It
is reasonable to impose the equation (y 7→ z) · (x 7→ y) = (x 7→ z), allowing us to represent sequences of edits in
a compact form. But now consider what happens when we apply the edit (5 7→ 7) · (3 7→ 5) to the state 5. The
second monoid action law demands that ((5 7→ 7) · (3 7→ 5)) � 5 = (5 7→ 7) � ((3 7→ 5) � 5), which, by the equation
we imposed, is the same as (3 7→ 7) � 5 = (5 7→ 7) � ((3 7→ 5) � 5). But the left-hand side is equal to 5 (since the
edit (3 7→ 7) does not apply to the state 5), while the right-hand side is equal to 7 (since the first edit, (3 7→ 5), is
inapplicable to the state 5, so it behaves like the identity and returns 5 from which (5 7→ 7) takes us to 7), so the
action law is violated.

13

We will use modules to represent the structures connected by lenses. Before coming to the
definition of lenses, however, we need one last ingredient: the notion of a stateful homomorphism
between monoids. As we saw in the examples, there are situations where the information in an edit
may be insufficient to determine how it should be translated—we may need to know something more
about how the two structures correspond. The exact nature of the extra information needed varies
according to the lens. To give lenses a place to store such auxiliary information, we follow [11] and
allow the edit-transforming components of a lens (the V and W functions) to take a complement
as an extra input and return an updated complement as an extra output.

Definition 5. Given monoids M and N and a complement set C, a stateful monoid homomor-
phism from M to N over C is a function h ∈M × C → N × C satisfying two laws:

h(1M , c) = (1N , c)

h(m, c) = (n, c′) h(m′, c′) = (n′, c′′)

h(m′ ·M m, c) = (n′ ·N n, c′′)

These are basically just the standard monoid homomorphism laws, except that h is given access to
some internal state c ∈ C that it uses (and updates) when mapping from M to N ; in the second
law, we must thread the state c′ produced by the first h into the second use of h, and we demand
that both the result and the effect on the state should be the same whether we send a composite
element m′ ·m through h all at once or in two pieces.

The intended usage of an edit lens is as follows. There are two users, one holding an element
of X the other one an element of Y , both referred to hereafter as replicas. Initially, they hold
initX and initY , respectively, and the lens is initialized with complement `.missing . The users then
perform actions and propagate them across the lens. An action consists of producing an edit dx
(or dy), applying it to one’s current replica x (resp. y), putting the edit through the lens to obtain
an edit dy (resp. dx), and asking the user on the other side to apply dy (dx) to their replica. In
the process, the internal state c of the lens is updated to reflect the new correspondence between
the two replicas.

We further assume there is some consistency relation K between X, Y , and C, which describes
the “synchronized states” of the replicas and complement. This gives us a natural way to state the
totality requirement discussed above: if we start in a consistent state, make a successful edit (one
that does not fail at the initiating side), and put it through the lens, the resulting edit is guaranteed
(a) to be applicable on the receiving side and (b) to lead again to a consistent state. We make no
guarantees about edits that fail at the initiating side: these should not be put through the lens.

Definition 6. A symmetric edit lens between modules X and Y consists of a complement set C, a
distinguished element missing ∈ C, two stateful monoid homomorphisms

V ∈ ∂X × C → ∂Y × C
W ∈ ∂Y × C → ∂X × C

and a ternary consistency relation K ⊆ |X| × C × |Y | such that

• (initX ,missing , initY) ∈ K;

14

• if (x, c, y) ∈ K and dx x is defined and V(dx, c) = (dy, c′), then dy y is also defined and
(dx x, c′, dy y) ∈ K;

• if (x, c, y) ∈ K and dy y is defined and W(dy, c) = (dx, c′), then dx x is also defined and
(dx x, c′, dy y) ∈ K.3

3One might consider a more general format with “creation” operations creater ∈ X → Y × C and symmetrically
createl . This format actually arises as a special case of the one above by choosing the edit monoids to include
operations of the form set(x) for x ∈ X, with action set(x)�x′ = x. One can then define creater(x, c) = V(set(x), c).

15

Chapter 3

Spreadsheets

16

Lenses keep two similar pieces of data consistent; as either one evolves, the lens finds analogous
evolutions for the other. However, current lenses don’t generalize smoothly to more than two pieces
of data. Spreadsheets manage many pieces (cells) of data that are related to each other, but they are
generally unidirectional: some cells are special automatically-updated cells, and the values in these
cells are always computed by the system and cannot be changed by the user. Constraint propagation
systems generalize spreadsheets to be many-directional when possible. However, current systems
do not use old states of the system to guide the computation of new states; any system state which
satisfies the given constraints is allowed.

The goal of the hyperlenses project is to merge the three systems, giving a way of maintaining
constraints between many pieces of data that, when given an update to some part of the system,
finds an “analogous” update to the rest of the system. Below we discuss criteria on which the
success of the hyperlenses project can be judged.

In typical constraint propagation systems, there are variables and constraints. Constraints may
involve any number of variables, and are simply relations on valuations of those variables. In the
following, many of the relations we care about will be of the form

{(x1, . . . , xm, y1, . . . , yn) | f(x) = g(y)}

and so we will simply write these as f(x) = g(y) when it is clear from context that a relation is
expected.

3.1 Simple example

A user might draw up a vacation expenditures spreadsheet that looks like this:
Day Travel Lodging Food Total
1 750 120 45 915
2 30 120 18 168
3 0 120 150 270
4 15 120 30 165
5 750 0 15 765
Total 1545 480 258 2283

Along with the table, we would expect to see some constraints like

TravelTotal = Travel1 + Travel2 + Travel3 + Travel4 + Travel5

Total1 = Travel1 + Lodging1 + Food1

and so on, with ten constraints in all (one each for days 1, 2, 3, 4, 5, and Total, and one each for
categories Travel, Lodging, Food, and Total). Here are some things a user might want to do with
this setup:

• The user might go on another vacation, and want to make an estimate of how much he spent
on food given his credit card balance at the end of the trip. To do this, he might update
TotalTotal to his balance and look in the FoodTotal cell to get a guess.

• The user might like to plan a vacation to a certain location with a certain budget; then he
could fix the TotalTotal cell and update the travel prices for the first and last day’s plane
tickets to get an estimate of how much he can spend on the various other days and categories
while staying in his budget.

17

• Perhaps the user discovers that he is missing a category for entertainment and wants to add
a new column, initially populated with zeros. He did not keep careful track of his daily
spending for this on the last vacation, but he knows that in total he spent about $800 on
entertainment, so he updates the new EntertainmentTotal cell to 800.

3.2 Goal statement

A hyperlens should be a generalization of both lenses and spreadsheets that supports
high-level planning.

Hyperlenses should generalize lenses. It should be true that there is a behavior-preserving
embedding of asymmetric, state-based lenses: that is, we can identify two variables in the hyperlens
system whose values correspond to states of the asymmetric lens’ two repositories, and the values
in the hyperlens system evolve in the same way they would evolve when running the lens itself.
Moreover, we demand that there be a “hyperlens composition” that preserves this property: the
embedding of a composition of lenses is the composition of their embeddings.

A stretch goal is to generalize symmetric, state-based lenses in a similar way, and again to find
a composition operator (potentially different from the previous one) that corresponds to symmetric
lens composition.

Hyperlenses should generalize spreadsheets. It is unreasonable to demand that the hyperlens
framework be capable of bidirectionalizing all spreadsheets in a reasonable way. However, on the
class of spreadsheets that can be bidirectionalized, it should be the case that using the corresponding
hyperlens as if it were a unidirectional spreadsheet produces the same answers as the original
spreadsheet would.

A stretch goal is to generalize spreadsheets in the sense that any spreadsheet can be expressed
as a (possibly still unidirectional) hyperlens with the same behavior.

Hyperlenses should support high-level planning. As with all bidirectional systems, there will be
some updates which can be spread through the remainder of the system in many ways. Support
for high-level planning means that there is some holistic language (that is, which does not require
intimate knowledge of the structure of the term used to define the hyperlens) for expressing the
relative desirability of the various coherent updates to the system. The system should then be
able to compute the most desirable update. For example, being able to request that a particular
variable be a sink for as much of the change as possible would satisfy this requirement.

3.3 Simplistic solutions

Some particularly simple regimes have already been explored. Four such regimes are discussed
below, but it will be helpful to have a few conventions in place first.

Fix a linearly ordered set N of names and a universe U of values. Since we are dealing with
partial functions, we will use the convention that a = b whenever both a and b are undefined or
whenever a and b are defined and identical. Likewise, a ∈ b means that both a and b are undefined
or they are both defined and a is a member of b.

Definition 7. A valuation is a finite map from N to U .

We generalize valuation application from names to finite sets of names using the linear ordering
on N : whenever x1 < · · · < xm is an increasing chain, f({x1, . . . , xm}) = (f(x1), . . . , f(xm)).

18

Definition 8. A constraint is a finite set n ⊂ N together with a relation R ⊂ U |n|.

Definition 9. A valuation f satisfies constraint (n,R) when f(n) ∈ R.

Definition 10. The constraint system graph induced by a set of constraints is the undirected
bipartite graph whose nodes are drawn from N in one part and constraints in the other, and which
has an edge (v, (n,R)) iff v ∈ n.

In some systems we discuss below, each constraint will have a clear notion of “output” variable.
In these systems it will be convenient to also have a directed variant of the constraint system graph.

Definition 11. A pointed constraint is a pair (v, (n,R)) of a constraint and a designated variable
v ∈ n.

Definition 12. The directed constraint system graph induced by a set of pointed constraints is a
directed bipartite graph whose nodes are drawn from N in one part and pointed constraints in the
other. It has an edge from v to (v′, (n,R)) iff v 6= v′ and v ∈ n, and it has an edge from (v′, (n,R))
to v iff v = v′.

Definition 13. A root node is a node in a directed graph with in-degree zero.

Definition 14. A node has high in-degree if its in-degree is greater than one.

In a directed constraint system graph, a root node corresponds to a name that is not the output
of any constraint.

3.3.1 Spreadsheets

One particularly simple regime is where there is a directed constraint system graph with no cycles,
no nodes with high in-degree, and edits are made only to root nodes. This corresponds to how
most well-known spreadsheets behave. However, the restriction that you may only edit root nodes
is quite limiting: it essentially means that the system is unidirectional.

3.3.2 Tree topology

The lens frameworks discussed in 2 amount to having a constraint system graph with exactly two
variables and exactly one constraint connecting them. You may only edit one of the variables at
a time. Then, to propagate the change, you spread the change from the changed variable to the
unchanged one. We can take the idea of propagating change from changed variables to untouched
ones somewhat further: when the constraint system graph is a tree, an update to a single node
may be propagated through the entire graph by treating the updated node as a root of the tree
and updating the values of nodes in topologically-sorted order.

We leave the discussion here short because this solution is completely subsumed by the solution
in Section 3.3.4.

19

3.3.3 Linear constraints

Consider this simple, non-tree-structured spreadsheet:

tax = 0.08 ∗ base
total = base + tax

Despite the mildly interesting structure of the constraint system graph, it is still definitely possible
to bidirectionalize this spreadsheet.

Suppose each constraint in the spreadsheet is linear, that is, has the form

x = b +
∑
i

ciyi

for some constants b and c. Additionally, we take the topological constraints that the directed
constraint system graph has no (directed) cycles or nodes with high in-degree. (Note that the two-
equation spreadsheet above has cycles in its constraint system graph but not its directed constraint
system graph.)

Under these assumptions, a simple argument shows that, given a cell in the spreadsheet, we
can write an affine formula which maps the values of root cells to the value of the given cell. The
argument goes by induction on the length of the longest path from a root cell to the given one,
and proceeds by substituting in affine formulas for each non-root variable at each step. In fact,
we can go a step farther: we can write affine transformations from root cells to any set of cells. If
we manage to give a characterization of when these affine transformations can be bidirectionalized,
then we will have given an account of how to handle the multi-update problem and relax the simple
structure requirement in the parts of the spreadsheet where only affine formulae are used.

Thus, we can now frame our problem in another way: what is the right way to bidirectionalize
an affine transformation? Accordingly, we will now step away from spreadsheets and frame our
discussion in linear algebra terms.

A function get ∈ Rm → Rn is affine exactly when there is a matrix M of dimension n ×
m and vector b ∈ Rn such that get(x) = Mx + b. Affine functions are surjective (and hence
bidirectionalizable) just when M has rank n, so we assume this. When m = n, f is a bijection.
The put function in this case is particularly boring, because it ignores the original source:

put(x,y) = M−1(y − b)

The more interesting case is when m > n, and where each y is therefore the image of a nontrivial
subspace of Rm. There are many heuristics one may choose to identify a particular point in this
subspace; we choose the specification:

put(x,y) = argmin
x′,get(x′)=y

||x′ − x||

Lemma 1. There exists an m× n matrix P such that

put(x,y) = x + P (y − get(x))

satisfies the specification above.

20

Proof sketch. The intuition is that we wish to move as little as possible in source-space to
match the move in target-space. This can be achieved by minimizing how far we move in the null
space of M1, since (exactly) these motions result in no motion in target-space. Choose a basis
{x1, . . . ,xm−n} for the null space of M . Then we will take:

B =

 x>1
...

x>m−n

P =

[
M
B

]−1 [
In

0m−n,n

]

Turning the sketch into a proof involves arguing three things: that the square matrix in the defini-
tion of P is invertible; that P produces a put function that roundtrips; and that the put function
produced by P produces minimal changes. The definition above was crafted so that (assuming for
the moment that P exists) we have MP = I, which is used to show the roundtrip property, and
BP = 0, which is used to show minimality.

3.3.4 Biased graph combination

In the three previous solutions, we have carefully restricted the allowed graph topologies and val-
uation updates so that there is at most one best strategy for reinstating constraints. This skirts
one of the major goals of the hyperlens project: developing tools that embrace ambiguous updates
and provide tools for disambiguating. In this section, we will explore a setting with some slight
ambiguity and a way to give programmer control. We will also allow multi-update, and give a
type system describing statically solvable updates. The high-level idea is to combine two small
constraints on variable sets S and T into a single large constraint on variable set S ∪ T in a biased
way: the programmer designates one of the two constraints as special, and whenever an update
could be resolved by resolving the two constraints in either order, we choose to resolve the special
constraint first.

Consider the spreadsheet given by these two schematic constraints:

o1 = f(i1, i2)

o2 = g(i1, i2)

Given an update to i1, it may be possible to resolve these two constraints in either of the following
two ways:

• First, update i2 and o1 to restore the f constraint. Then, update o2 without modifying i1 or
i2 (so as not to disrupt the already-restored f constraint) to restore the g constraint.

• Symmetrically, first update i2 and o2 to restore the g constraint, then update o1 without
modifying i1 or i2 to restore the f constraint.

1Recall that the null space of M is the set {x |Mx = 0}.

21

It is perfectly reasonable for these two plans to choose different updated values for i2. One way to
resolve the tie is to give either f or g higher priority.

Let us call the objects of this simple solution multiway lenses. We will give a definition, show
how to combine multiway lenses (so that e.g. the above example would be the combination of one
multiway lens for the f constraint and one for the g constraint), and briefly discuss some limitations
of this approach.

Definition 15. Given N ⊂ N , a multiway lens ` ∈M(N) is a triple (D, put ,K) where

• D ∈ 22
N

is a predicate on sets of names called the danger zone of `,

• put ∈ 2N → (N → U) → (N → U) is an update function which takes a set of names and a
valuation on N and produces another valuation, and

• K is an invariant expressed as a predicate on valuations on N .

The danger zone will be our “type system”: updates to sets of variables that are in the danger
zone are statically unsolvable. The first argument to the put function should be read as marking
which variables have been updated. There are some well-formedness conditions on multiway lenses.
First, we will want an analog of the lens framework’s roundtrip laws. We will also ask that danger
zones be sensible in the sense that updating more variables does not make the constraint system
more solvable, and that the put function restrain itself to modifying parts of the valuation that are
not inputs.

Definition 16. A set D is upwards-closed if i ∈ D and N ⊂ N implies i ∪N ∈ D.

Definition 17. A multiway lens ` is well-formed when it satisfies the following laws:

• put(i, f) ∈ K whenever i /∈ D

• put(i, f) = f whenever f ∈ K

• D is upwards-closed

• put(i, f)|i = f |i
In the definition of multiway lens composition below, it will be convenient to extend put func-

tions so that they act on valuations that cover extra variables by leaving the extra variables’ values
unchanged.

Definition 18. Suppose we have N ⊂M ⊂ N , a lens k ∈M(N), a set of names i ⊂M , and f is
a valuation on M . Then focus(k, i, f) is a valuation on M :

focus(k, i, f)(x) =

{
k.put(i ∩N, f |N)(x) x ∈ N
f(x) x /∈ N

Definition 19. Suppose k ∈ M(Nk) and ` ∈ M(N`) and let S = Nk ∩ N` be the set of shared
variables. Then the composition k | ` ∈M(Nk ∪N`) of k and ` has:

D = k.D ∪ `.D ∪ {(dk ∪ d`) \ S | dk ∈ k.D, d` ∈ `.D}

put(i) =

{
focus(`, i ∪ S) ◦ focus(k, i) i /∈ k.D ∧ i ∪ S /∈ `.D
focus(k, i ∪ S) ◦ focus(`, i) otherwise

K(f) = k.K(f |Nk
) ∧ `.K(f |N`

)

22

Lemma 2. k | ` is well-formed whenever k and ` are.

In the definition of (k | `).put , there are two clauses corresponding to running k first and running
` first, respectively. The side condition on the first clause—i /∈ k.D ∧ i ∪ S /∈ `.D—itself has two
parts that amount to checking that we can safely run k.put and that we can treat all of the outputs
of k.put as inputs when running `.put , respectively. The bias alluded to above arises from the fact
that the second clause is active only when the first clause fails; in cases where it is safe to run either
k or ` first, we arbitrarily choose to run k first.

The danger zone defined for composition ensures that it is safe to run one of the two sub-
multiway lenses first. Returning to our example, suppose the base lenses `f and `g for the f and
g constraints had danger zones saying only that we cannot update all three variables involved at
once, that is:

`f .D = {{i1, i2, o1}}
`g.D = {{i1, i2, o2}}

Then, the danger zone for `f | `g would be

{{i1, i2, o1}, {i1, i2, o2}, {o1, o2}}

which says that an update is dangerous if it’s dangerous for either of the sub-multiway lenses or if
it changes both outputs at once. In the latter case, it would not be safe to run either sub-multiway
lens first, since this would over-constrain the other sub-multiway lens.

Multiway lenses are an attractively simple formalism, but they do have some serious drawbacks.
For example, it is clear by design that composition is not commutative. A more subtle and impor-
tant failing is that composition is not associative. This is because the composition discussed here
treats its components as black boxes: it will run each of its components as a chunk. As a result,
we find that (k | `) | m will always run m either first or last—never in between k and `—and will
therefore sometimes fail where k | (` | m) can succeed by choosing one of these m-in-the-middle
orderings.

3.4 Design axes

A full solution could reasonably build on either the restrictive constraints of the linear solution
or the restrictive topology of the tree-structured solution. Because it seems difficult to extend
the restrictive constraints solution sufficiently to achieve our top-level goal of embedding all asym-
metric, state-based lenses, the approach of extending the restrictive topology solution seems more
promising. Below, we discuss some of the difficulties that should be addressed by a successful
generalization.

There is a distinction between the dynamic and static semantics of a constraint system graph.
Unless specified otherwise, all discussion is of the static semantics.

Definition 20. Semantics:

Dynamically ambiguous means the current instantiation of the graph’s constraints and requested
updates have multiple satisfying valuations.

23

Dynamically unsolvable means the current instantiation of the graph’s constraints and requested
updates have no satisfying valuations.

Statically ambiguous means the graph can be instantiated with constraints and requested updates
which have multiple satisfying valuations.

Statically unsolvable means the graph can be instantiated with constraints and requested updates
which have no satisfying valuation.

For an example of the difference between dynamic and static, consider the very simple spread-
sheet:

x = y

x = z

The requested update {y = 3, z = 3} is dynamically solvable because we can choose x = 3 to get
a complete, consistent valuation. On the other hand, {y = 3, z = 4} is dynamically unsolvable.
Because there are requested values for y and z that are dynamically unsolvable, the requested
update {y = 3, z = 3} is statically unsolvable.

3.4.1 Sources of ambiguity

Intra-constraint ambiguity

Consider the very simple constraint system which has only one constraint, z = x + y. Giving a
value for z gives us a classical “underconstrained system”: there are infinitely many choices for x
and y that satisfy this constraint. For example, we might choose to keep y and only update x, we
might choose to increase x and y by the same summand, we might ignore the old values of x and
y altogether and make them both be particular fractions of z, we might attempt to preserve the
product x ∗ y, etc. In our simple example, when we update the grand total, one reasonable choice
would be to scale all the summands by the same factor the grand total was scaled by.

More abstractly, we might wish to have some runtime control over how constraint solutions are
being chosen in case there is ambiguity.

Desiderata 1. Have programmer-level control over the resolution of individual constraints.

Desiderata 2. Have high-level control over the resolution of individual constraints.

Cycles and inter-constraint ambiguity

Above, we discussed the possibility of constraint system graphs with cycles in them. We observed
that in such situations, it may be that no ordering of the constraints’ methods may result in a
consistent state; however, there are also situations where many orderings each result in a consistent
state – and indeed, the chosen consistent states may even differ. As a very simple example, consider
this system that has some seemingly redundant variables:

z1 = x + y

z2 = x + y

24

We will assume that each constraint either allows us to update zi alone given x and y or allows us
to update zi and y together. The first constraint uses the update policy

(z′1, y
′) =

(
z1 +

x′ − x

2
, y − x′ − x

2

)
which spreads half the change to each variable, while the second constraint uses the update policy

(z′2, y
′) =

(
z2 +

x′ − x

3
, y − 2(x′ − x)

3

)
which spreads only a third of the change to z1 and the rest to y.

Suppose we start from the all-zero valuation and then update x to 6. There are (at least)
two reasonable update plans that guarantee consistency: update z1 and y together to 3 and −3,
respectively, then update z2 to 3, or the symmetric plan that updates z2 and y together to 2 and
−4, then updates z1 to 2.

Desiderata 3. Provide high-level control over ambiguous cycles.

3.4.2 Sources of insolubility

Cycles

Suppose we have three variables, x, and y, and z, and three constraints, one on each pair of
variables. We will allow ourselves to assume we also have a collection of methods for each individual
constraint that can take an update to one of the variables and produce a value of the other variable
that satisfies the constraint. The question now becomes: can we take an update to one variable,
say, x, and produce updates to the other two that reinstate all three constraints?

The naive approach, where we compute y from our assumed method that reinstates the {x, y}
constraint and z from our assumed method that reinstates the {x, z} constraint doesn’t necessarily
work, since there is no guarantee that the y and z computed this way satisfy the {y, z} constraint.

Consider our simple example above: there are two “paths” in the constraint graph from the
TotalTotal node to the Travel1 node, namely via Total1 and via TravelTotal. What we would be asking
for is a guarantee that, for example, the way we choose to spread an update over the category totals
and thereafter over the individual cells is compatible with the way we choose to spread an update
over the day totals and thereafter over the individual cells. In the case of our simple example,
we could certainly achieve this using arithmetic facts, but in more complicated examples the way
forward is less clear.

Desiderata 4. Handle dynamically solvable cycles.

Multiple update

Many constraint propagation systems support the update of multiple variables simultaneously. As
discussed in our simple running example, making a vacation plan on a budget might involve setting
the grand total and the travel costs all at once. This is distinct from setting them one at a time,
since we want the system to guarantee that all three values can coexist, whereas when we set them
one at a time each update may disrupt the values of the other two.

Desiderata 5. Identify solvable multiple updates.

25

3.4.3 Other difficulties

Algebraic structure

Experience with programming in other lens languages has shown that sequential composition is a
key feature for modularity. Hyperlens composition may not necessarily be sequential, but there
should be some tools for developing hyperlenses in a modular way. For this to make sense, we
expect that the programmer will wish for composition to be associative (so that how modules are
combined does not matter) and may even wish for composition to be commutative (so that the
order modules are defined does not matter).

Desiderata 6. Provide an associative, commutative composition operation.

Efficiency

We would like the hyperlens project to produce a framework that is usable for very large data sets,
even when there is a lot of ambiguity. It is very easy to design constraint system graph topologies
where certain updates produce an enormous number of reasonable full update plans; a good solution
to the problem should be able to not only choose one of these plans, but also do so in an efficient
way.

Desiderata 7. Select an update plan in polynomial time in the size of the hyperlens.

Desiderata 8. Reinstate coherence in a single pass: for each constraint, execute one method at
most once.

Syntax

Any sensible formalism can be instantiated; for example, a sensible hyperlens formalism should
include operations that correspond to some of the basic computations done with spreadsheets:
some arithmetic, perhaps some simple string operations, aggregations, composition, and so on.

Desiderata 9. Provide a syntax for basic spreadsheet programming.

Inter-constraint coordination

It would be nice if the hyperlens associated with

x = a + b

y = x + c

behaved “similarly” to the hyperlens associated with

x = b + c

y = a + x

in the sense that an update to y in either system resulted in the same updates to a, b, and c. This
is nice from a language design point of view because it means you need not introduce separate +
functions for each arity, and is nice from a usability point of view because it means that there is
no price to pay for modularity: you can split up your code into whatever units make sense to you
and get the same program out.

Desiderata 10. Allow constraints to interact during system update.

26

now ESOP PLDI FLOPS ICLP

Aug Sept Oct Nov Dec Jan Feb March April May June Aug

ICSE
PADL

ambiguity research black box research defense writing

Figure 3.1: Proposed research timeline

3.5 Timeline

Currently, the most promising approach is to use local constraint propagation-style update planning,
but add some features to give programmer control of constraint resolution order in situations where
the order is ambiguous. One major unfinished piece of work is inventing and evaluating such schemes
for providing programmer control. I expect there to be a tradeoff involved between flexibility (how
much control the programmer has) and simplicity (how expert the programmer must be to achieve
his goals).

Having simple, high-level control is a major goal of the project; nevertheless, I propose to begin
with a serious investigation of very flexible, low-level control schemes, with the hopes that (1) a
solid understanding of the behavior of low-level controls will guide the design of high-level schemes,
and (2) that low-level schemes may serve as a “compilation target” for high-level schemes—and an
escape hatch when the less flexible schemes produce undesirable update plans.

The other major unfinished work involves investigating how to incorporate high quality, special-
purpose constraint solvers. For example, the linear constraint solver proposed in 3.3.3 has many
desirable properties, and would be a convenient component in a larger system; as would dynamic
solvers for statically unsolvable cycles.

I propose the following timings:

• Low-level control schemes: 2 months

• High-level control schemes: 1 month

• Incorporating black boxes for linear and cyclic solvers: 1 month

• Extending the linear solver to nonlinear functions: 2 months

• Defense writing: 3 months

This proposed timeline is also shown in Figure 3.1, which includes some possible publication targets
as well as one month of slack time for preparing publications.

27

Chapter 4

Related work

28

4.1 Symmetric lenses

There is a large literature on lenses and related approaches to propagating updates between con-
nected structures. We discuss only the most closely related work here; good general surveys of the
area can be found in [3, 9]. Connections to the literature on view update in databases are surveyed
in [7]. A short version of this paper is available in [11].

The first symmetric approach to update propagation was proposed by Meertens [15] and followed
up in the context of model-driven design by Stevens [23], Diskin [4], and Xiong, et al [27]. Meertens
suggests modeling synchronization between two sets X and Y by a consistency relation R ⊆ X×Y
and two consistency maintainers / : X × Y → X and . : X × Y → Y such that (x / y) R y and
x R (x . y) always hold, and such that x R y implies x / y = x and x . y = y.

The main advantage of symmetric lenses over consistency maintainers is their closure under
composition. Indeed, all of the aforementioned authors note that, in general, consistency main-
tainers do not compose and view this as a drawback. Suppose that we have relations R ⊆ X × Y
and R′ ⊆ Y × Z maintained by ., / and .′, /′, resp. If we want to construct a maintainer for the
composition R;R′, we face the problem that, given x ∈ X and z ∈ Z, there is no canonical way
of coming up with a y ∈ Y that will allow us to use either of the existing maintainer functions.
Concretely, Meertens gives the following counterexample. Let X be the set of nonempty context
free grammars over some alphabet, and let Y be the set of words over that same alphabet. Let
R ⊆ X×Y be given by G R x ⇐⇒ x ∈ L(G). It is easy to define computable maintainer functions
making this relation a constraint maintainer. Composing this relation with its opposite yields an
undecidable relation (namely, whether the intersection of two context-free grammars is nonempty),
so there cannot be computable maintainer functions.

We can transform any constraint maintainer into a symmetric lens as follows: take the relation R
itself (viewed as a set of pairs) as the complement, and define putl(x′, (x, y)) = (x′.y, (x′, x′.y)) and
similarly for putr . If we compose such a symmetric lens with its opposite we obtain R×Rop as the
complement and, for example, putr(x′, ((x1, y1), (y2, x2))) = (x2/(x′.y1), ((x

′, x′.y1), (x
′.y1, x2/(x′.

y1)))). For Meertens’ counterexample, we would have complements of the form ((G1, w1), (w2, G2)),
with w1 ∈ L(G1) and w2 ∈ L(G2); “putr”-ing a new grammar G′1 through the composed lens yields
the complement ((G′1, w

′
1), (w

′
1, G

′
2)), where w′1 is w1 if w1 ∈ L(G1) and some default otherwise, and

where G′2 = G2 if w′1 ∈ L(G2) and S→w′1 (where S is the start state) otherwise. We observe that
there is a property of lenses analogous to Meertens’ requirement that x R y implies x / y = x. This
property is not necessarily preserved by composition, and in particular the lens described above
for synchronizing languages does not have it. Meertens recommends using a chain of consistency
maintainers in such a situation to achieve a similar effect; however, the properties of such chains
have not been explored.

For asymmetric lenses, a number of alternative choices of behavioral laws have been explored.
Some of these are strictly weaker than ours; for example, a number of papers from a community
of researchers based in Tokyo replace the PutGet law with a somewhat looser PutGetPut law,
permitting a broader range of useful behaviors for lenses that duplicate information. It would be
interesting to see what kind of categorical structures arise from these choices. The proposal by
Matsuda et al. [14] is particularly interesting because it also employs the idea of complements.
Conversely, stronger laws can be imagined, such as the PutPut law discussed by Foster et al. [7]
and the more refined variants in [8].

A different foundation for defining lenses by recursion was explored by Foster et al. [7], using
standard tools from domain theory to define monotonicity and continuity for lens combinators

29

parametrized on other lenses. The main drawback of this approach is that the required (manual)
proofs that such recursive lenses are total tend to be somewhat intricate. By contrast, we expect
that our initial-algebra approach can be equipped with automatic proofs of totality (that is, choices
of the weight function w) in many cases of interest.

4.2 Edit lenses

The most closely related attempt at developing a theory of update propagation is [5] by Diskin et
al. Their starting point is the observation (also discussed in [2]) that discovery of edits should be
decoupled from their propagation. They thus propose a formalism, sd-lenses, for the propagation
of edits across synchronized data structures, bearing some similarities with our edit lenses. The
replicas, which we model as modules, are there modeled as categories (presented as reflexive graphs).
Thus, for any two states x, x′ there is a set of edits X(x, x′). An sd-lens then comprises two reflexive
graphs X,Y and for any x ∈ X and y ∈ Y a set C(x, y) of “correspondences” which roughly
correspond to our complements. Forward and backward operations similar to our W and V then
complete the picture. No concrete examples are given of sd-lenses, no composition, no notion of
equivalence, and no combinators for constructing sd-lenses; the focus of the paper is rather on the
discovery of suitable axioms, such as invertibility and undoability of edits, and a generalization of
hippocraticness in the sense of Stevens [23]. They also develop a comparison with the state-based
framework. In our opinion, the separation of edits and correspondences according to the states that
they apply to or relate has two important disadvantages. First, in our examples, it is often the case
that one and the same edit applies to more than one state and can be meaningfully propagated
(and more compactly represented) as such. For example, while many of the container edits tend to
only work for a particular shape, they are completely polymorphic in the contents of the container.
Second, the fact that state sets are already categories suggests that a category of sd-lenses would
be 2-categorical in flavor, entailing extra technical difficulties such as coherence conditions.

Meertens’s seminal paper on constraint maintainers [15] discusses a form of containers for lists
equipped with a notion of edits similar to our edit language for lists, but does not develop a general
theory of edit-transforming constraint maintainers.

A long series of papers from the group at the University of Tokyo [10, 12, 17, 18, 28, etc.] deal
with the alignment issue using an approach that might be characterized as a hybrid of state-based
and edit-based. Lenses work with whole states, but these states are internally annotated with
tags showing where edits have been applied—e.g., marking inserted or deleted elements of lists.
Barbosa et al.’s matching lenses [2] offer another approach to dealing with issues of alignment in
the framework of pure state-based lenses.

4.3 Spreadsheets

The spreadsheet model proposed here draws significant inspiration from the field of constraint pro-
gramming systems, which dates back to at least the Sketchpad drawing system of 1963 [25]. A
good survey of the huge body of work done in this area is given in [26]. In constraint program-
ming languages, programs typically include a series of declarations defining what valuations are
valid and invalid; the language runtime is then tasked with finding a valuation which satisfies the
constraints. Our proposed work would maintain this broad framework, but extend it by providing
more control over which of many possible valuations may be chosen. In particular, our proposal is

30

to model information both about satisfying valuations (as is done in previous systems) and about
the evolution of valuations. To achieve this, the modules responsible for re-instating individual de-
clared constraints must be given data about both the old satisfying valuation and the desired new
valuation. Additionally, we propose an investigation of methods for separately specifying whether
a valuation is valid and how desirable a valuation is.

There is a chain of work on DeltaBlue, a particular constraint programming system, which adds
the ability to rank constraints, and break low-ranked constraints during the constraint solution
stage [19, 20, 21]. This gives one way of influencing ambiguous solutions: add low-ranked constraints
expressing the desirable properties of your valuation. When there are multiple valuations possible
on the high-ranked constraints, the low-ranked ones may be used to choose between them. We
believe some properties of “desirability” are not naturally representable as constraints, especially
when “desirable” means “the new valuation is close to the old one in this way”.

The algebraic properties of constraint propagation systems have been explored somewhat [13].
Järvi et al. discuss the model we intend to use as a starting point, and show that it can be
decomposed into a structure with an associative, commutative composition and an algorithm which
traverses this structure for update planning without losing efficiency. However, because determinism
is not a goal for them, they make no efforts to resolve the ambiguity that can arise from the existence
of multiple update plans.

There are several systems with proposed solutions that are not based on constraint propagation
systems. For example, a GUI resembling a spreadsheet is discussed in [22]. Numerical constraints
– including constraints representing assignments of values to particular cells – are shipped out to
Mathematica for solution. A significant advantage of this approach is that it can take advantage of
the significant solving power of Mathematica. However, this methodology is restricted to data types
known by Mathematica; does not provide old cell values to use when updating the spreadsheet;
provides little control over which of many satisfying valuations are chosen; and does not attempt
to make any guarantees about totality.

Another such system is Tiresias, which extends Datalog with bidirectional capabilities for nu-
meric computations [16]. They give a variant of Datalog that allows for nondeterministic predicates
(that is, where tuples may or may not appear) and show how to pick a deterministic instantiation
of those predicates that satisfies a Datalog query. The choice of instantiation can also be guided by
an objective function to be maximized or minimized. This seems to be a very promising approach,
but does have a few important limitations: first, there is a topological constraint (the Datalog
query must be stratified); and second, it is not clear that the approach can be easily generalized
beyond the small collection of arithmetic predicates that it currently supports.

31

Bibliography

[1] François Bancilhon and Nicolas Spyratos. Update semantics of relational views. ACM Trans-
actions on Database Systems, 6(4):557–575, December 1981.

[2] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and Benjamin C. Pierce.
Matching lenses: Alignment and view update. In ACM SIGPLAN International Conference
on Functional Programming (ICFP), Baltimore, Maryland, September 2010.

[3] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and
James F. Terwilliger. Bidirectional transformations: A cross-discipline perspective. In
Richard F. Paige, editor, ICMT, volume 5563 of Lecture Notes in Computer Science, pages
260–283. Springer, 2009.

[4] Zinovy Diskin. Algebraic models for bidirectional model synchronization. In Krzysztof Czar-
necki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, MoDELS, volume
5301 of Lecture Notes in Computer Science, pages 21–36. Springer, 2008.

[5] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Hermann, and Fer-
nando Orejas. From state- to delta-based bidirectional model transformations: The symmetric
case. Technical Report GSDLAB-TR 2011-05-03, University of Waterloo, May 2011.

[6] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bi-directional tree transformations: A linguistic approach to the
view update problem. ACM Transactions on Programming Languages and Systems, 29(3):17,
2007. Extended abstract presented at Principles of Programming Languages (POPL), 2005.

[7] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bi-directional tree transformations: A linguistic approach to the
view update problem. ACM Transactions on Programming Languages and Systems, 29(3):17,
May 2007. Extended abstract in Principles of Programming Languages (POPL), 2005.

[8] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable security views. In
IEEE Computer Security Foundations Symposium (CSF), Port Jefferson, NY, July 2009.

[9] John Nathan Foster. Bidirectional Programming Languages. PhD thesis, University of Penn-
sylvania, December 2009.

[10] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirectionalizing graph
transformations. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Baltimore, Maryland, September 2010.

32

[11] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric lenses. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Austin,
Texas, January 2011.

[12] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for develop-
ing structured documents based on bi-directional transformations. In Partial Evaluation and
Program Manipulation (PEPM), pages 178–189, 2004. Extended version in Higher Order and
Symbolic Computation, Volume 21, Issue 1-2, June 2008.

[13] Jaakko Järvi, Magne Haveraaen, John Freeman, and Mat Marcus. Expressing multi-way data-
flow constraint systems as a commutative monoid makes many of their properties obvious.
In Proceedings of the 8th ACM SIGPLAN workshop on Generic programming, pages 25–32.
ACM, 2012.

[14] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization trans-
formation based on automatic derivation of view complement functions. In ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 47–58. ACM Press New
York, NY, USA, 2007.

[15] Lambert Meertens. Designing constraint maintainers for user interaction, 1998. Manuscript.

[16] Alexandra Meliou and Dan Suciu. Tiresias: the database oracle for how-to queries. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages
337–348. ACM, 2012.

[17] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-directional
updating. In ASIAN Symposium on Programming Languages and Systems (APLAS), pages
2–20, November 2004.

[18] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language for reversible
computation. In Seventh International Conference on Mathematics of Program Construction
(MPC), 2004.

[19] Michael Sannella. Analyzing and debugging hierarchies of multi-way local propagation con-
straints. In Principles and Practice of Constraint Programming, pages 63–77. Springer, 1994.

[20] Michael Sannella. Skyblue: a multi-way local propagation constraint solver for user interface
construction. In Proceedings of the 7th annual ACM symposium on User interface software
and technology, pages 137–146. ACM, 1994.

[21] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus
one-way constraints in user interfaces: Experience with the deltablue algorithm. Software:
Practice and Experience, 23(5):529–566, 1993.

[22] Marc Stadelmann. A spreadsheet based on constraints. In Proceedings of the 6th annual ACM
symposium on User interface software and technology, pages 217–224. ACM, 1993.

[23] Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. In International Conference on Model Driven Engineering Languages and Systems
(MoDELS), Nashville, TN, volume 4735 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2007.

33

[24] Perdita Stevens. Towards an algebraic theory of bidirectional transformations. In Graph Trans-
formations: 4th International Conference, Icgt 2008, Leicester, United Kingdom, September
7-13, 2008, Proceedings, page 1. Springer, 2008.

[25] Ivan E Sutherland. Sketchpad: A man-machine graphical communication system. In Proceed-
ings of the SHARE design automation workshop, pages 6–329. ACM, 1964.

[26] Mark Wallace. Practical applications of constraint programming. Constraints, 1(1-2):139–168,
1996.

[27] Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Supporting parallel updates with bidirectional
model transformations. Theory and Practice of Model Transformations, pages 213–228, 2009.

[28] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong Mei.
Towards automatic model synchronization from model transformations. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), Atlanta, GA, pages 164–173,
2007.

34

