
Electronic Communications of the EASST

Second International Workshop on Bidirectional
Transformations (BX 2013)

Edit languages for information trees

Martin Hofmann and Benjamin C. Pierce and Daniel Wagner

11 pages

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Edit languages for information trees

Martin Hofmann and Benjamin C. Pierce and Daniel Wagner

Ludwig-Maximilians-Universität and University of Pennsylvania

Abstract: We consider a simple set of edit operations for unordered, edge-labeled
trees, called information trees by Dal Zilio et al [DLM04]. We define tree languages
using the sheaves automata from [FPS07] which in turn are based on [DLM04] and
provide an algorithm for deciding whether a complex edit preserves membership in
a tree language. This allows us to view sheaves automata and subsets of tree edits
as edit languages in the sense of [HPW12]. They can then be used to instantiate
the framework of edit lenses between such languages and model concrete examples
such as synchronisation between different file systems or address directories.

Keywords: Bidirectional programming, lens, edit, information tree

1 Introduction

Semantic models of bidirectional transformations are generally presented as transformations be-
tween the states of replicas. For example, the familiar framework of asymmetric lenses defines
a lens between replicas of types A and B as a pair of a get function from A to B and a put func-
tion from A×B to A. An implementation directly based on this semantics would pass to the put
function the entire states of the original A and updated B replicas.

Though pleasingly simple, this treatment falls short of telling a full story in at least two impor-
tant ways. First, it does not explain how the lens should align the parts of the old A and the new
B so that the parts of A that are “hidden” in the B view retain their positions in the result. For
example, if A and B are both lists of people where each element of A includes a name, address,
and email while the corresponding elements of B give only a name and address, the user will rea-
sonably expect that inserting a new element at the head of the B replica will lead to an updated A
replica where each existing name keeps its associated email. And second, the simple “classical”
form of asymmetric lenses fails to capture the reasonable expectation that a small change to the
B replica can be transformed into a change to the A replica using time and space proportional to
the size of the change, not to the sizes of the replicas.

One way to address at least the first concern is to enrich the basic structure of a state-based
lens with a new input to the put function, a data structure that explicitly represents the align-
ment between the original and updated B replicas; this idea forms the basis for dictionary
lenses [BFP+08], matching lenses [BCF+10], and symmetric [DXC+11b] and asymmetric delta
lenses [DXC11a] (based on [Ste07]). Another approach is to annotate the B structures them-
selves with change information [XLH+07, HHI+10]. However, all these approaches still involve
whole replica states, either as explicit inputs and outputs of the put function or implicitly as
part of the type to which a delta belongs. Thus, it is not clear whether these models can be
implemented in such a way that small changes to a replica are propagated in time and space
proportional to the size of the change.

1 / 11

Edit languages for information trees

In earlier work [HPW12], we proposed going a step further and define lenses that work ex-
clusively with edits. We defined a semantic model called edit lenses in which the sets of source
and target replicas A and B are enriched with monoids of edits and a lens’s get and put functions
map edits to edits. This work was carried out in an abstract algebraic setting where the actual
data structures being transformed and the exact shapes of edits to them were left unspecified;
in this setting, we showed how a number of familiar constructions on lenses—products, sums,
etc.—could be carried out.

The present paper1 takes a first step toward instantiating this abstract semantic model with
concrete data structures and a concrete notion of edits. The data model we choose is a very
common and expressive one: unordered, edge-labeled trees—called information trees by Dal
Zilio et al [DLM04]. These can encode a variety of data formats, including XML-style trees,
their original application. Furthermore, trees have been used to represent graphs [BDHS96,
HHI+10] by unrolling up to bisimulation. This paper thus makes a first step towards general
edit languages for trees. Our edit operations comprise in particular insertion and deletion of
subtrees and renaming of edges; we show how these give rise to edit languages on tree languages
and can thus be used to instantiate the framework of edit lenses so as to yield bidirectional
synchronization between information trees.

Our main technical result is that weakest preconditions of our edits can be efficiently com-
puted for sets of information trees specified by sheaves automata. This allows for efficient “type
checking” of edits and thus permits automatic checks that an edit language for trees presented as
a sheaves automaton and certain sequences of atomic edits is indeed well-formed.

The present work is thus a first step; we hope that the introduction of tree automata into the
world of editing and synchronization will also lead to high-level support for constructing edit
lenses themselves and for checking their soundness, but this remains future work.

2 Trees and sheaves automata

This section introduces some notations and definitions that we need in the sequel. Some of the
descriptions are taken from [FPS07].

2.1 Trees

We assume a finite alphabet Σ and consider unordered trees whose edges are labeled by Σ∗. We
write trees with a pair of braces {||} for each node; each subtree is written n 7→ t, where n names
the edge that leads to the subtree t. To reduce clutter, we abbreviate the tree {|n 7→ {||}|} to just n
when no confusion arises. For example, here is an explicit tree with two children labeled “name”
and “email”...

{|name 7→ {|John 7→ {||}|},email 7→ {|john@example.com 7→ {||}|}|}

...and its abbreviated form:

{|name 7→ John,email 7→ john@example.com|}
1 An expanded version with additional examples and explanation is available at
http://dmwit.com/papers/201302ELfIT full.pdf.

2 / 11

ECEASST

We write t(n) ↓ to indicate that tree t has child n, t(n) ↑ to indicate that tree t does not have child
n, and t(n) for the child under the edge labeled n. We write dom(t) = {n | n ∈ Σ∗∧ t(n) ↓}. The
expression t[n 7→ t ′] describes the tree that agrees with t everywhere, except that its child under
label n is t ′. The expression t \{n1,n2, . . . ,nk} describes the tree that is undefined at n1,n2, . . . ,nk
but agrees with t everywhere else. When context makes it clear that n is a name, we write t \n to
mean t \{n}. To simplify the definition of partial functions, we take an expression like t[n 7→ E]
when E is undefined to be undefined itself.

2.2 Tree edits

The set of atomic tree edits is defined as follows (where e ranges over edits, t over trees, and m
and n over names):

e ::= insert(t) | hoist(m,n) | delete(m) | rename(m,n) | at(n,e)

The application of an atomic edit e to a tree t is either undefined (⊥) or a new tree defined as
follows:

insert(t ′) · t = t ∪ t ′ if dom(t)∩dom(t ′) = /0

hoist(m,n) · t = t[m 7→ t(m)\n,n 7→ t(m)(n)] t(m)(n) ↓ ∧ t(n) ↑
delete(n) · t = t \n t(n) = {||}

rename(n,n′) · t = (t \n)[n′ 7→ t(n)] t(n) ↓ ∧ t(n′) ↑
at(n,e) · t = t[n 7→ e · t(n)] t(n) ↓

e · t =⊥ in all other cases

Tree edits are sequences of atomic edits. We overload · as tree edit application, which is the
natural lifting of atomit edit application to sequences:

〈〉 · t = t

〈a1, . . . ,an〉 · t = 〈a1, . . . ,an−1〉 · (an · t)

2.3 Sheaves formulae and automata

Intuitively, a sheaves automaton consists of a set of states, each associated with a sheaves for-
mula; each sheaves formula describes a set of trees by specifying which names may occur as
immediate child edges and, for each one, an automaton state that describes the subtree found
beneath it.

To describe sheaves automata more formally, we must first fix a formalism for writing down
arithmetic constraints. We use Presburger arithmetic—the decidable first-order theory of the
naturals with addition but without multiplication—for this purpose2. Expressions in Presburger

2 Here we follow the lead of [FPS07] and [DLM04]. Presburger arithmetic is a particularly expressive logic, and it is
possible that a simpler fragment suffices, but we leave an investigation of this possibility to future work.

3 / 11

Edit languages for information trees

arithmetic include constants, variables, and sums, and formulae include equalities between ex-
pressions, boolean combinations of formulae, and quantified formulae:

m ::= 0,1,2, . . .

v ::= m | xi | v+ v

φ ::= v1 = v2 | φ1∨φ2 | φ1∧φ2 | ¬φ | ∃φ

We use a de Bruijn representation—a variable x j within the scope of k quantifiers represents the
(j− k)th free variable if j ≥ k, and otherwise is bound by the jth enclosing quantifier, counting
from the inside-out.

The semantics of a Presburger formula is the set of vectors of naturals that satisfy it. We write
c̄ � φ for formula satisfaction, substituting ci for xi, and fv(φ) for the set of free variables in φ .

Next, a sheaves automaton comprises a finite set of states together with a mapping Γ from
states to sheaves formulae. The transition behavior from a state is given by the sheaves formula
associated with it in Γ. Each sheaves formula has two components—a Presburger formula φ and
a list of elements, each of the form ri[si], where ri is a regular language called the tag of the
element, and si is a state. The operation of a sheaves automaton is like a bottom-up regular tree
automaton. Let t be a tree and s be an automaton state with Γ(s) = (φ , [r0[s0], . . . ,rk[sk]])]). For
each i in the range 0 to k, let ci be the number of children n ∈ dom(t) for which n ∈ ri and t(n) is
accepted by si. Then t is accepted by s iff the vector (c0, . . . ,ck) |= φ .

Note that the integers that represent variables in de Bruijn notation give the correspondence
between free variables in φ and elements—the constraint on xi controls the number of children
whose name matches ri with subtrees accepted by si.

In the following, it will sometimes be convenient to treat elements (and the corresponding
Presburger variables in the sheaves formula) as if they were indexed by some set with more
structure than the natural numbers. This is perfectly reasonable, provided there is an injective
mapping from the structured set to the naturals. When it is clear that such an injective mapping
exists (and in particular especially when the structured set is finite) we will leave the mapping
unspecified and simply use values from the structured set as subscripts to the collections r̄ and s̄
as well as any Presburger variables, understanding rv to stand for r f (v).

Sheaves automata and sheaves formulae are subject to some well-formedness conditions. A
sheaves formula (φ ,E) with |E|= k is well-formed iff the free variables of φ are {x0, . . . ,xk−1};
the elements are pairwise disjoint—i.e., if the list includes ri[si] and r j[s j] and there exists a tree
accepted by both si and s j, then the regular languages denoted by ri and r j are disjoint; and the
elements are generating—i.e., for every tree t and label n ∈ dom(t) there is an element ri[si] such
that n ∈ ri and t(n) is accepted by si. A list of elements obeying these conditions is called a
basis. A sheaves automaton is well-formed iff every sheaves formula in the range of Γ is well-
formed. These well-formedness conditions guarantee two properties. First, because the elements
are non-overlapping, every tree has a unique decomposition over the basis, which means that the
semantics of a sheaves automaton is well-defined. Second, because the elements generate the
set of all tree slices, certain constructions are simple. For example, (φ ,E) and (φ ,E) accept
complementary sets of trees.

As an example, the set of trees

{{||}, {|a,b|}}

4 / 11

ECEASST

is described by the automaton state s, where Γ(s) is(
((x0=0∧ x1=0)∨ (x0=1∧ x1=1))∧ (x2=0),[
a[>],b[>],{a,b}[>]

])

and > is a state that accepts any tree3. To see this, observe that the constraints on x0 and x1 force
the number of children described by the elements a[>] and b[>] to both be 0 or both be 1, and
that the constraint on x2 forces the number of children belonging to the final element to be 0, that
is, there are no edge labels other than a or b.

The relation A,s ` t tells when automaton A accepts tree t when started at state s. We often
write sheaves automata as A = (S,s0,Γ), where s0 is a distinguished initial state. We then write
A
 t to mean A,s0 ` t. We also write L(A) = {t | A
 t} for the language accepted by automaton
A.

For the definitions in the next section, a small change of notation is convenient: instead
of writing a sheaves formula as a pair (φ ,E) of a presburger formula and a sequence E =
r1[s1], . . . ,rn[sn] of elements, we will often write it as (φ ,r,s), giving the sequence of regular
languages for child names and the sequence of subtree states separately.

3 Weakest preconditions of edits

So far, we have reviewed a definition for trees and a notion of type-checking for trees, namely,
sheaves automata. We have also given a definition for tree edits; what remains is to give a notion
of type-checking for tree edits. The question we are interested in is: given a desired target tree
type and an edit, how do we create a type of source trees that guarantees arrival at the target type?
We will press the sheaves automata into service again, building a “source-type” automaton given
a particular edit and “target-type” automaton.

Let A,B be sheaves automata and e be an edit. We write e : A→ B to mean that whenever A
 t
and e · t is defined we have B
 e · t.

We now define for each edit e and automaton A a new automaton e ·A such that t ∈ L(e ·A)
iff e · t ∈ L(A) whenever e · t is defined, that is, e ·A is an automaton representing the weakest
precondition that ensures that applying edit t will result in a tree of type A. Formally: L(e ·
A) = {t | e.t ↓⇒ e.t ∈ L(A)}. It is then clear that e : A→ B iff L(A) ⊆ L(e · B) (notice that
if e.t is undefined then, trivially, t ∈ L(e.A)). Language inclusion of sheaves automata being
decidable [DLM04], this then implies a decision procedure for e : A→ B and in particular for
deciding whether a given edit belongs to A→ A.

Theorem 1 Let A= (S,s0,Γ) be a sheaves automaton and e be an atomic tree edit. There exists
a sheaves automaton e ·A = (S′,s′0,Γ

′) such that t ∈ L(e ·A) iff e · t is undefined or e · t ∈ L(A).
Moreover, e ·A can be effectively obtained from e and A.

Proof. The construction proceeds in two stages. First, we define for each edit e a sheaves au-
tomaton De such that L(De) = {t | e · t ↑}.
3 For example, we could set Γ(>) = (x0 = x0, [Σ

∗[>]]).

5 / 11

Edit languages for information trees

m n

(a) The trees automaton A accepts.

n

m

(b) The trees hoist(m,n) ·A should accept.

Figure 1: the hoist operation

Then, for each edit e, we construct a sheaves automaton e ?A such that for all t with e · t ↓
one has e ?A
 t ⇐⇒ A
 e · t. We then define the desired automaton e ·A so that L(e ·A) =
L(De)∪L(e?A) using the union construction from [DLM04].

Given this strategy, the remaining definitions are essentially a programming exercise.

• e= insert(t ′). For De we need to check that the toplevel labels of t ′ are not present. If these
are, say, r1 . . .rn and rn+1 is Σ∗ \ {r1, . . . ,rn} then the sheaves formula (∑n

i=1 xi 6= 0, r̄,>̄)
with > a state accepting any tree achieves the purpose when attached to the initial state of
De.

To build e ?A we add a fresh state s′0 that is just like s0 except that it has already “seen”
the subtree t ′. That is, if Γ(s0) = (φ , r̄, s̄) and ci is the number of labels n ∈ ri∩dom(t ′) for
which A,si ` t ′(n), then we define

S′ = S∪{s′0}
φ
′ = φ [xi + c/xi]

Γ
′ = Γ[s′0 7→ (φ ′, r̄, s̄)]

where φ [e/x] is the formula φ with expression e substituted for variable x.

• e = hoist(m,n). Suppose Γ(s0) = (φ , r̄, s̄). The high-level plan for e ?A is to add some
new states for each state that the m-branch could be accepted under that tell which state
the n-branch was accepted under. To this end, define sets Im and In so that m ∈ ri iff i ∈ Im

and likewise n ∈ ri iff i ∈ In. We now perform the following modifications:

– Add a fresh state s′0, making it the initial state, and letting it initially be a copy of s0.

– Replace ri with a regex that matches L(ri)\{n} for each i ∈ In.

– Remove the Im regexes (and their associated successor states) from the sheaves for-
mula associated with s′0.

6 / 11

ECEASST

– Add the regex that matches exactly n, with a fresh successor state sn which accepts
any tree.

– For each (i, j)∈ Im× In, add a new regex which is a copy of the original ri and whose
successor state is a copy of the automaton that accepts the language of trees that
can be split into an n part accepted by s j and a remainder accepted by si. Name the
indices of the regexes and successor states added by this operation ki j.

– Modify the Presburger formula associated with s′0 to reflect the changes above: for
each i ∈ Im, replace occurrences of xi with ∑ j xki j , and for each j ∈ In, replace occur-
rences of x j with ∑i xki j . (If i ∈ Im∩ In for some i, then these two operations coincide,
because of the partitioning property of sheaves formulae.)

The definition of De is analogous to the previous case.

• e = delete(n). The automaton that accepts exactly the tree {|n 7→ {||}|} is easy to construct;
call this automaton A′. We then define De = ¬(>+A′) using the constructions described
in [FPS07]. For e?A, remove n from each of the ri. Then add an extra condition guarded
by n. Place no constraint on the corresponding cardinality. Leave the other cardinalities as
they were.

• e = rename(n,n′). Suppose Γ(s0) = (φ , r̄, s̄). Choose a fresh s′0 and define

r′i =
{

r′i ∪{n} n′ ∈ r′i
r′i \{n} n′ /∈ r′i

S′ = S∪{s0}
Γ
′ = Γ[s′0 7→ (φ ,r′, s̄)]

Then this new automata counts any n-rooted subtree as if it were an n′-rooted one instead.

We should briefly argue that the sheaves formula given for s′0 is generating and pairwise
disjoint. It is generating: take any tree t and name n′′ ∈ dom(t), and apply the definition of
“generating” to the original sheaves formula using the tree [n′ 7→ t(n′′)] if n′′ = n or using
the tree [n′′ 7→ t(n′′)] if not. It is pairwise disjoint: consider r′i[si] and r′j[s j] for which both
si and s j accept tree t. Take any name n′′ = n (resp. n′′ 6= n). Since the original sheaves
formula is pairwise disjoint, at most one of ri and r j contain n′ (resp. n′′), hence at most
one of r′i and r′j contain n′′.

For De we use the automaton ({>,s},s,Γ) where:

Γ(>) = (0 = 0, [Σ∗[>]])
Γ(s) = (x0 = 0∨ x1 6= 0, [{n}[>],{n′}[>],Σ∗ \{n,n′}[>]])

• e = at(n,e′). Suppose Γ(s0) = (φ , r̄, s̄). Define the set I so that n ∈ ri iff i ∈ I. We will
apply the edit e to each of the automata that start at si such that i∈ I, and use these modified
automata as the new states associated with these regexes. Define:

A′i = e · (S,si,Γ)

7 / 11

Edit languages for information trees

Later, we will want to ensure that the A′i automata are disjoint in the sense that they accept
no common trees. This is mostly true of these A′i: since the states si accept disjoint trees,
the trees which arrive at state si after being edited by e are also disjoint sets. However, these
A′i may also accept trees for which the edit e does not apply. Since we don’t care what our
final automata does with such trees (as we will be dealing with this situation in De), this
subtlty is not important, so we will define it away. The language difference operation can
be implemented on automata, so we define Ai = (Si,ai,Γi) = A′i \Ai−1 \ · · · \A0.

Additionally, we may define an automata A−1 = (S−1,a−1,Γ−1) which accepts exactly
when none of the automata Ai for i ∈ I do using standard constructions. Without loss of
generality, we may assume the Si are pairwise disjoint and disjoint from S. (If not, just
rename them—this does not change the behavior of the automata.)

We are now ready to begin constructing the new automaton. We will index the new formula
by the set

{edited(i) | i ∈ I}∪{unedited(i) | 0≤ i < |r̄|}∪{illtyped}

telling whether we consider the successor state to be descending into an edited child or
not. (The illtyped index is used to capture children which would be edited, but for which
the edit would not be defined.) We then pick a fresh s′0 and define:

S′ = {s′0}∪S∪S−1∪
⋃
i∈I

Si

r′edited(i) = {n}

r′unedited(i) = ri \{n}

r′illtyped = {n}
s′edited(i) = ai

s′unedited(i) = si

s′illtyped = a−1

ρ(xi) = xedited(i)+ xunedited(i) i ∈ I

ρ(xi) = xunedited(i) i /∈ I

φ
′ = ρφ ∧ xilltyped = 0

Γ
′(s′0) = (φ ′,r′,s′)

Γ
′(s) = Γi(s) s ∈ Si

Γ
′(s) = Γ(s) s ∈ S

One might worry about whether the states associated with the regular language {n} above
are disjoint and generating. They are generating because of the addition of the catch-all
state s′illtyped, and are disjoint because the Ai are disjoint as automata.

To build De, we first recursively build De′ = (S,s0,Γ), then create some fresh states s′0,
¬s0, and >. The new automaton will check whether either there is no n child or there is
one, but it’s accepted by D′e:

8 / 11

ECEASST

S′ = S∪{s′0,¬s0,>}
Γ
′(>) = (0 = 0, [Σ∗[>]])

Γ
′(s′0) = (x0 6= 0∨ x1 = 0, [{n}[s0],{n}[¬s0],Σ

∗ \{n}[>]])
Γ
′(¬s0) = (¬φ ,e) where Γ(s0) = (φ ,e)

Γ
′(s) = Γ(s) s ∈ S

De = (S′,s′0,Γ
′)

Lemma 1 Language inclusion of sheaves automata is decidable.

Proof. Given sheaves automata A and B to tell whether L(A)⊆ L(B) build an automaton C such
that L(C)= L(A)\L(B) using the algorithms for intersection and complement given in [DLM04].
Then check whether or not L(C) = /0.

Corollary 1 Given sheaves automata A and B and edit e it is decidable whether e : A→ B.

Proof. Given the theorem, this amounts to deciding whether L(A)⊆ L(e ·B).

4 Edit languages and lenses

In previous work [HPW12] we defined an edit language E as a set E (or |E|) of elements, a
monoid ∂E of edit operations and a partial action · : ∂E×E→ E. Given a sheaves automaton A,
we can thus form an edit language EA, the full tree edit language over A, whose set of elements
is L(A) and whose monoid of edits ∂EA is {e | e : A→ A}. We have seen that membership in
∂EA is effectively decidable.

For a concrete example of such an edit language consider a file system wherein an edge carry-
ing a label starting with F represents a file, whereas a label starting with D represents a directory.
We can easily design a sheaves automaton FS that ensures that all labels are of one of these two
kinds and that only directories have children.

The (full) edit monoid ∂EFS then comprises those sequences of atomic edits that preserve this
structure and we can effectively check for a given edit that this is the case.

Also recall from [HPW12] that an edit lens between two edit languages E and E ′ comprises:

• a complement set C

• a consistency relation K ⊂ |E|×C×|E ′|

• a rightward translationV ∈ ∂E×C→ ∂E ′×C

• a leftward translationW ∈ ∂E ′×C→ ∂E×C

such that:

9 / 11

Edit languages for information trees

• consistency and typing are preserved, that is,

(a,c,b) ∈ K e ∈ ∂E e ·a ↓
V(e,c) = (e′,c′)

(e ·a,c′,e′ ·b) ∈ K e′ ∈ ∂E ′ e′ ·b ↓

and similarly forW

• composition of edits is respected, that is,

V(e1,c) = (e′1,c
′) V(e2,c′) = (e′2,c

′′)

V(e2e1,c) = (e′2e′1,c
′′)

and similarly forW

It is now possible to design lenses between full tree edit languages of the form EA for a sheaves
automaton A, but we believe that this is not necessarily the best way of proceeding, since the edit
transformation embodied in the lens might need to get some intensional information about the
intended semantics of the edit to be translated. We are thus led to define a tree edit language to
be an edit language whose set of elements is of the form |E|= L(A) for some sheaves automaton
A and whose monoid of edits ∂E comes with a monoid morphism f : ∂E → {e | e : A→ A}.
Thus, every edit is “implemented” as a sequence of atomic edits and, thus, assuming that ∂E
is finitely generated, we can check well typedness by checking whether f (g) : A→ A holds for
every generator g. In the file system example the edit monoid might comprise creation, deletion,
and moving of files and directories, each of which can be implemented as a sequence of atomic
edits and thus checked to preserve the required structure.

It is then possible to design tree edit lenses that synchronise between different file systems and
file structures, for example one having nested subdirectories and the other one being essentially
flat. In such a case, the complement will store alignment information in the form of a bijection
between files and directories.

5 Conclusion

We have defined a simple set of edits for information trees comprising insertions, deletions, relo-
cations, and renamings of subtrees. Our main technical result states that tree languages defined
by sheaves automata [DLM04] are effectively closed under weakest preconditions for these edits
and that therefore, typechecking of edits against tree types defined by sheaves automata [FPS07]
is algorithmically tractable.

We see this result as a first step towards an automata-based high-level formalism for tree
synchronisation; in particular we would like to investigate to what extent complements and con-
sistency relations can be defined by automata and how the tree types from [FPS07] and the as-
sociated term formers can be lifted to edit lenses. More speculative goals include the automatic
discovery of tree edits (“tree diffing”) and the extension to graphs.

10 / 11

ECEASST

Bibliography

[BCF+10] D. M. J. Barbosa, J. Cretin, N. Foster, M. Greenberg, B. C. Pierce. Matching
Lenses: Alignment and View Update. In ACM SIGPLAN International Conference
on Functional Programming (ICFP), Baltimore, Maryland. Sept. 2010.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu. A Query Language and Opti-
mization Techniques for Unstructured Data. In ACM-SIGMOD. Pp. 505–516. 1996.

[BFP+08] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, A. Schmitt. Boomerang:
Resourceful Lenses for String Data. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, California. Jan.
2008.

[DLM04] S. Dal Zilio, D. Lugiez, C. Meyssonnier. A Logic You Can Count On. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),
Venice, Italy. Pp. 135–146. ACM Press, Jan. 2004.

[DXC11a] Z. Diskin, Y. Xiong, K. Czarnecki. From State- to Delta-Based Bidirectional Model
Transformations: the Asymmetric Case. Journal of Object Technology 10:6:1–25,
2011.

[DXC+11b] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, F. Orejas. From State- to
Delta-based Bidirectional Model Transformations: The Symmetric Case. Technical
report GSDLAB-TR 2011-05-03, University of Waterloo, May 2011.

[FPS07] J. N. Foster, B. C. Pierce, A. Schmitt. A Logic Your Typechecker Can Count On:
Unordered Tree Types in Practice. In Workshop on Programming Language Tech-
nologies for XML (PLAN-X), informal proceedings. Jan. 2007.

[HHI+10] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano. Bidirectionaliz-
ing Graph Transformations. In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Baltimore, Maryland. Sept. 2010.

[HPW12] M. Hofmann, B. C. Pierce, D. Wagner. Edit Lenses. In ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), Philadelphia,
Pennsylvania. Jan. 2012.

[Ste07] P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. In International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS), Nashville, TN. Lecture Notes in Computer Sci-
ence 4735, pp. 1–15. Springer-Verlag, 2007.

[XLH+07] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, H. Mei. Towards automatic model
synchronization from model transformations. In IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), Atlanta, GA. Pp. 164–173. 2007.

11 / 11

	Introduction
	Trees and sheaves automata
	Trees
	Tree edits
	Sheaves formulae and automata

	Weakest preconditions of edits
	Edit languages and lenses
	Conclusion

