Edit Lenses

Martin Hofmann

Ludwig-Maximilians-Universitit

Abstract

A lens is a bidirectional transformation between a pair of connected
data structures, capable of translating an edit on one structure into
an appropriate edit on the other. Many varieties of lenses have
been studied, but none, to date, has offered a satisfactory treatment
of how edits are represented. Many foundational accounts [5, 7]
only consider edits of the form “overwrite the whole structure,”
leading to poor behavior in many situations by failing to track the
associations between corresponding parts of the structures when
elements are inserted and deleted in ordered lists, for example.
Other theories of lenses do maintain these associations, either by
annotating the structures themselves with change information [6,
15] or using auxiliary data structures [2, 4], but every extant theory
assumes that the entire original source structure is part of the
information passed to the lens.

We offer a general theory of edit lenses, which work with de-
scriptions of changes to structures, rather than with the structures
themselves. We identify a simple notion of “editable structure”—a
set of states plus a monoid of edits with a partial monoid action
on the states—and construct a semantic space of lenses between
such structures, with natural laws governing their behavior. We
show how a range of constructions from earlier papers on “state-
based” lenses can be carried out in this space, including composi-
tion, products, sums, list operations, etc. Further, we show how to
construct edit lenses for arbitrary containers in the sense of Abbott,
Altenkirch, and Ghani [1]. Finally, we show that edit lenses refine a
well-known formulation of state-based lenses [7], in the sense that
every state-based lens gives rise to an edit lens over structures with
a simple overwrite-only edit language, and conversely every edit
lens on such structures gives rise to a state-based lens.

1. Introduction

Recent years have seen growing interest in bidirectional program-
ming languages—domain-specific languages where a program de-
scribes how to maintain a connection between data structures of
two different shapes, translating updates to one structure into ap-
propriate updates to the other. The core concepts of bidirectional
programming have roots in early work on the database view up-
date problem (see [5] for a survey); more recently, they have been
explored in diverse areas including model-driven software develop-
ment [13], data synchronization [5], user interfaces [10], and Unix
system configuration management [9].

[Copyright notice will appear here once ’preprint’ option is removed.]

Benjamin Pierce

University of Pennsylvania

Daniel Wagner

University of Pennsylvania

The meaning of a bidirectional program connecting a set X to
a set Y—often called a lens from X to Y—is intuitively a pair
of transformations, one mapping X updates to Y updates and the
other mapping Y updates to X updates, subject to some behavioral
laws specifying how the two transformations fit together. Techni-
cally, this intuition can be realized in numerous ways. A naive def-
inition is to say that a lens from X to Y is just a pair of functions,
f € X — Y (telling how to map an updated X state to an appro-
priate Y state) and g € Y — X. But this is too simple: if the lens
laws impose the reasonable requirement that f and g should “round
trip,” then our bidirectional programs will only denote bijections—
an important but limited special case. To allow for situations where
each structure can contain a mixture of information that is shared
with the other and information that is not, something more than just
the updated structure must be given as input to the transformations.

Different variants of lenses differ as to what this “something
more” should be. We might, for example, give the transformation
from X to Y bothanew X and anold Y—ie, f € X XY —
Y —with the intention that f should weave together the “shared”
information from the new X with the “local” information from the
old Y to produce a new Y. Or instead of a whole Y, we might
pass f some smaller structure (a complement) representing just the
information that is needed to build an updated Y out of an updated
X. Or perhaps one of these plus some additional information about
the alignment of the updated information (e.g., “a new element was
inserted at the beginning of this list, so the second element in the
new X corresponds to the first element in the old Y™), either in the
form of an auxiliary data structure or perhaps somehow embedded
as annotations in the updated X itself.

What all these variants have in common is that the inputs to
a lens always include the whole updated state. This leaves an un-
fortunate gap between the theory and practical realizations, which
generally represent updates in some simpler, more compact form
that only describes what has changed in a possibly large structure.

In this paper, we offer the first foundational treatment of edit
lenses—lenses that operate directly on edits, rather than on whole
structures. Our theory of edit lenses is built from simple and famil-
iar algebraic structures (§3). It supports a wide range of fundamen-
tal syntactic constructions—composition, products, sums, list oper-
ations, etc.—allowing us to construct lenses for complex data struc-
tures together with appropriate representations for edits in a compo-
sitional fashion (§4). Indeed, the theory includes a general account
of how to construct “mapping” lenses for a wide class of container
data structures [1] such as lists and trees (§5). This rich set of syn-
tax constructors should form a suitable basis for the design of new
bidirectional languages, for example in the style of Boomerang [2].
Our theory can support a wide variety of edit languages. We mostly
concentrate on the simplest form, where compound edits are freely
generated from some set of atomic edits; §6 considers the exten-
sion to richer languages with additional algebraic laws. Finally, our
theory generalizes and refines the state-based symmetric lenses of
Hofmann, Pierce, and Wagner [7] in a precise sense (§7). The paper

2011/11/12



Schubert, 1797-1828 Schubert, Austria
Shumann, 1810-1856 Shumann, Germany

(a) initial replicas

ins(3);
mod(3, (“Monteverdi”, “1567-1643")

Schubert, 1797-1828 Schubert, Austria
Shumann, 1810-1856 N ———
Monteverdi, 1567-1643 ! i

(b) a new composer is added to one replica

ins(3)
mod(3, (“Monteverdi”, 1))

Schubert, 1797-1828 Schubert, Austria
Shumann, 1810-1856 Shumann, Germany
Monteverdi, 1567-1643 Monteverdi, ?country?

(c) the lens adds the new composer to the other replica

mod(3, (1, "ltaly"));
mod(2, ("Schumann", 1))

Schubert, 1797-1828 Schubert, Austria
Shumann, 1810-1856 Schumann, Germany
Monteverdi, 1567-1643 Monteverdi, Italy

(d) the curator makes some corrections

1
mod(2, ("Schumann", 1))

Schubert, 1797-1828
Schumann, 1810-1856
Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

(e) the lens transports a small edit

del(3); ins(1);
mod(1, (“Monteverdi”, “1567-1643"))

del(3); ins(1);
mod(1, (“Monteverdi”, 1))

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, ?country?
Schubert, Austria
Schumann, Germany

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

reorder(3,1,2) reorder(3,1,2)
(f) two different edits with the same effect on the left

Figure 1. A simple (complement-less) edit lens in action.

ends with a discussion of related work (§8) and some remarks on
future directions (§9).

2. Overview

Before diving into technicalities, let’s take a brief tour of the main
ideas via some examples. Figure 1 demonstrates a simple use of edit
lenses to synchronize two replicas.! In part (a), we see the initial
replicas, which are in a synchronized state. On the left, the replica
is a list of records describing composers’ birth and death years; on
the right, a list of records describing the same composers’ countries
of origin. In part (b), the user interacting with the left-hand replica

I'We use the word “synchronize” informally to mean simply “maintain a
correspondence between two replicas by propagating edits in both direc-
tions.” A full-blown synchronization tool would also include, at a minimum,
some mechanism for dealing with conflicts between disconnected edits to
the two structures, which is outside the scope of this paper.

decides to add a new composer, Monteverdi, at the end of the
list. This change is described by the edit script ins(3); mod(3,
(“Monteverdi”, “1567-1643")). The script says to first insert a
dummy record at index three, then modify this record by replacing
the left field with “Monteverdi” and replacing the right field with
“1567-1643". (One could of course imagine other edit languages
where the insertion would be done in one step. We represent it this
way because this is closer to how our generic “container mapping”
combinator in §5 will do things.) The lens connecting the two
replicas now converts this edit script into a corresponding edit script
that adds Monteverdi to the right-hand replica, shown in part (c):
ins(3); mod(3, (“Monteverdi”, 1)). Note that the translated mod
command overwrites the name component but leaves the country
component with its default value, “?country?.” This is the best it
can do, since the edit was in the left-hand replica, which doesn’t
mention countries. Later, an eagle-eyed editor notices the missing
country information and fills it in, at the same time correcting a
spelling error in Schumann’s name, as shown in (d). In part (e), we
see that the lens discards the country information when translating
the edit from right to left, but propagates the spelling correction.

Of course, a particular new replica state can potentially be
achieved by many different edits, and these edits may be trans-
lated differently. Consider part (f) of Figure 1, where the left-hand
replica ends up with a row for Monteverdi at the beginning of the
list, instead of at the end. Two edit scripts that achieve this effect
are shown. The upper script deletes the old Monteverdi record and
inserts a brand new one (which happens to have the same data) at
the top; the lower script rearranges the order of the list. The trans-
lation of the upper edit leaves Monteverdi with a default country,
while the lower edit is translated to a rearrangement, preserving all
the information associated with Monteverdi.

We do not address the question of where these edits come from
or who decides, in cases like part (f), which of several possible edits
is intended. As argued in [2], answers to these questions will tend to
be intertwined with the specifics of particular editing and/or diffing
tools and will tend to be messy, heuristic, and domain-specific—
unpromising material for a foundational theory. Rather, our aim is
to construct a theory that shows how edits, however generated, can
be translated between replicas of different shapes.

Abstractly, the lens we are discussing maps between structures
of the form (X X Y)* and ones of the form (X x Z)*, where X
is the set of composer names, Y the set of date strings, and Z the
set of countries. We want to build it compositionally—that is, the
whole lens should have the form £*, where * is a “list mapping” lens
combinator and / is a lens for translating edits to a single record—
i.e., £isalens from X x Y to X x Z. Moreover, / itself should be
built as the product ¢; X ¢2 of alens {1 € X — X that translates
composer edits verbatim, while ¢5 is a “disconnect” lens that maps
every edit on either side to a trivial identity edit on the other side.

In analogous fashion, the edit languages for the top-level struc-
tures will be constructed compositionally. The set of edits for struc-
tures of the form (X x Y)*, written ((X x Y)*), will be de-
fined together with the list constructor *. Its elements will have
the form ins(¢) where ¢ is a position, del(z), reorder(i1, ..., i)
where ¢1,...,7, is a permutation on positions (compactly rep-
resented, e.g. as a branching program), and mod(p,dv), where
dv € 9(X x Y) is an edit for X x Y structures. Pair edits
dv € 9(X x Y) have the form 90X x 9Y, where 9X is the set
of edits to composers and JY is the set of edits to dates. Finally,
both 0X and 9Y are sets of primitive “overwrite edits” that com-
pletely replace one string with another, together with an identity
edit 1 that does nothing at all; so X can be just {()} + X (with
1 = inl(())) and similarly for Y and Z.

Our lens £* will consist of two components—one for trans-
porting edits from the left side to the right, written (£*).= €

2011/11/12



[ inl, inr, inr, inl }

inl (Schumann)
inr (Kerouac)
inr(Tolstoy)
inl (Beethoven)

Schumann
Beethoven

Kerouac
Tolstoy

(a) the initial replicas: a tagged list of composers and authors on the
left; a pair of lists on the right; a complement storing just the tags

[ inl, inr, inr, inl }

(1, (ins(2); mod(2, “Salinger”)))

inl(Schumann)

. Kerouac
inr (Kerouac) Schumann A
a Salinger
inr(Tolstoy) Beethoven

Tolstoy

inl (Beethoven)

(b) an element is added to one of the partitions

[ inl, inr, inr, inr, inl }

ins(3); mod(3, inr(“Salinger”))

inl(Schumann)

inr (Kerouac) Schumann Kerouac
inr(Salinger) Beethoven Salinger
inr(Tolstoy) Tolstoy

inl (Beethoven)

(c) the complement tells how to translate the index

Figure 2. A lens with complement.

A(X xY)" — 9(X x Z)*? and another for transporting edits
from right to left, written (£*).& € 9(X x Z)" — 9(X x Y)™.

We sometimes need lenses to have a little more structure than
this simple example suggests. To see why, consider defining a
partitioning lens p between the sets 9((X +Y)*) and 9(X* xY™).
Figure 2 demonstrates the behavior of this lens. In part (a), we
show the original replicas: on the left, a single list that intermingles
authors and composers (with inl/inr tags showing which is which),
and on the right a pair of homogeneous (untagged) lists, one for
authors and one for composers. Now consider an edit, as in (b), that
inserts a new element somewhere in the author list on the right. It
is clear that we should transport this into an insertion on the left
replica, but where, exactly, should we insert it? If the < function
is given just an insertion edit for the homogeneous author list and
nothing else, there is no way it can translate this edit into a sensible
position in the combined list on the left, since it doesn’t know how
the lists of authors and composers are interleaved on the left.

The solution is to store a small list, called a complement, off
to the side, recording the fags (inl or inr) from the original, in-
termingled list, and pass this list as an extra argument to trans-
lation. We then enrich the types of the edit translation functions
to accept a complement and return a new complement, so that
p=> € I((X+Y))xC = (X" xY") x Candp& €
(X" xY*)xC — 9((X +Y)") x C. Part (c) demonstrates the
use (and update) of the complement when translating the insertion.

Note that the complement stores just the inl/inr tags, not the
actual names of the authors and composers in the left-hand list. In

2The symbol => is pronounced “put an edit through the lens from left to
right,” or just “put right.” It is the edit-analog of the putr function of the
state-based symmetric lenses in [7] and the put function of the state-based
asymmetric lenses in [3, 5].

general, the information stored in C' will be much smaller than the
information in the replicas; indeed, our earlier example illustrates
the common case in which C' is the trivial single-element set Unit.
The translation functions manipulate just the complements and the
edits, which are also small compared to the size of the replicas.

3. Edit Lenses

A key design decision in our formulation of edit lenses is to sepa-
rate the description of edits from the action of applying an edit to
a state. This separation is captured by the standard mathematical
notions of monoid and monoid action.

3.1 Definition: A monoid is a triple (M, -a,1ar) of a set M,
an associative binary operation a7 € M X M — M, and a
unit element 1, € M — that is, with -3 and 1, such that
zm(ymz)=(@-my) mzandly vz =z =z -m 1um.

When no confusion results, we use M to denote both the set and
the monoid, drop subscripts from - and 1, and write mn for m - n.

The unit element represents a “‘change nothing” edit. Multipli-
cation of edits corresponds to packaging up multiple edits into a
single one representing their combined effects.

Modeling edits as monoid elements gives us great flexibility
in concrete representations. The simplest edit language is a free
monoid whose elements are just words over some set of primitive
edits and whose multiplication is concatenation. However, it may
be useful to put more structure on edits, either (a) to allow more
compact representations or (b) to capture the intuition that edits to
different parts of a structure do not interfere with each other and
can thus be applied in any order. We will see an example of (b) in
§6. For a simple example of (a), recall from §2 that, for every set
X, we can form an overwrite monoid where the edits are just the
elements of X together with a fresh unit element—i.e., edits can
be represented as elements of the disjoint union Unit + X. Com-
bining two edits in this monoid simply drops the second (unless the
first is the unit): inl(()) - € = e and inr(z) - e = inr(z). These
equations allow this edit language to represent an arbitrarily long
sequence of updates using a single element of X (and, en passant,
to recover state-based lenses as a special case of edit lenses).The
monoid framework can also accommodate more abstract notions
of edit. For example, the set of all total functions from a set X to
itself forms a monoid, where the multiplication operation is func-
tion composition. This is essentially the form of edits considered
by Stevens [14]. We mostly focus on the simple case where edit
languages are free monoids. §6 considers how additional laws can
be added to the product and sum lens constructions.

3.2 Definition: Given a monoid M and a set X, a monoid action
on M and X is a partial function ® € M x X — X satisfying
twolaws: 1@z =zand (m-n) Oz =m©O (n ® x).

As with monoid multiplication, we often elide the monoid action
symbol, writing mz for m ® x. In standard mathematical terminol-
ogy, a monoid action in our sense might instead be called a “partial
monoid action,” but since we always work with partial actions we
find it convenient to drop the qualifier.

A bit of discussion of partiality is in order. Multiplication of
edits is a total operation: given two descriptions of edits, we can
always find a description of the composite actions of doing both in
sequence. On the other hand, applying an edit to a particular state
may sometimes fail. This means we need to work with expressions
and equations involving partial operations. As usual, any term that
contains an undefined application of an operation to operands is
undefined—there is no way of “catching” undefinedness. An equa-
tion between possibly undefined terms (e.g., as in the definition

2011/11/12



above) means that if either side is defined then so is the other, and
their values are equal (Kleene equality).

Why deal with failure explicitly, rather than keeping edit appli-
cation total and simply defining our monoid actions so that apply-
ing an edit in a state where it is not appropriate yields the same state
again (or perhaps some other state)? One reason is that it seems
natural to directly address the fact that some edits are not appli-
cable in some states, and to have a canonical outcome in all such
cases. A more technical reason is that, when we work with monoids
with nontrivial equations, making inapplicable edits behave like the
identity is actually wrong.?

However, although the framework allows for the possibility of
edits failing, we still want to know that the edits produced by our
lenses will never actually fail when applied to replica states arising
in practice. This requirement, corresponding to the totality property
of previous presentations of lenses [5], is formalized in Theorem
3.7. In general, we adopt the design principle that partiality should
be kept to a minimum; this simplifies the definitions.

It is convenient to bundle a particular choice of monoid and
monoid action, plus an initial element, into a single structure:

3.3 Definition: A module is a tuple (X, initx, 0X, ©®x) com-
prising a set X, an element initx € X, a monoid 0X, and a
monoid action ®x of 9X on X.

If X is a module, we refer to its first component by either | X| or
just X, and to its last component by ® or simple juxtaposition.

We will use modules to represent the structures connected by
lenses. Before coming to the definition of lenses, however, we
need one last ingredient: the notion of a stateful homomorphism
between monoids. As we saw in §2, there are situations where
the information in an edit may be insufficient to determine how it
should be translated—we may need to know something more about
how the two structures correspond. The exact nature of the extra
information needed varies according to the lens. To give lenses
a place to store such auxiliary information, we follow [7] and
allow the edit-transforming components of a lens (the = and &
functions) to take a complement as an extra input and return an
updated complement as an extra output.

3.4 Definition: Given monoids M and N and a complement set C,
a stateful monoid homomorphism from M to N over C'is a function
he M x C — N x C satisfying two laws:

h(l]w,c) = (IN,C)

h(m,c) = (n,c) h(m',c) = (n',c")
h(m' -pm,c) =

(n/ N, C”)

These are basically just the standard monoid homomorphism laws,
except that h is given access to some internal state ¢ € C' that it uses
(and updates) when mapping from M to N; in the second law, we
must thread the state ¢’ produced by the first A into the second use
of h, and we demand that both the result and the effect on the state

3 Here is a slightly contrived example. Suppose that the set of states is
natural numbers and that edits have the form (z — y), where the intended
interpretation is that, if the current state is x, then the edit yields state y. It
is reasonable to impose the equation (y — 2) - (z — y) = (z — 2),
allowing us to represent sequences of edits in a compact form. But now
consider what happens when we apply the edit (5 — 7) - (3 — 5) to the
state 5. The second monoid action law demands that ((5 — 7) - (3 —
5)©®5= (5~ T7)®((3+~ 5)©®5), which, by the equation we imposed,
is the same as (3 +— 7) ®5 = (5 — 7) ® ((3 — 5) ® 5). But the left-
hand side is equal to 5 (since the edit (3 — 7) does not apply to the state
5), while the right-hand side is equal to 7 (since the first edit, (3 — 5), is
inapplicable to the state 5, so it behaves like the identity and returns 5 from
which (5 + 7) takes us to 7), so the action law is violated.

should be the same whether we send a composite element m’ - m
through h all at once or in two pieces.

The intended usage of an edit lens is as follows. There are two
users, one holding an element of X the other one an element of
Y, both referred to hereafter as replicas. Initially, they hold ¢nit x
and inity, respectively, and the lens is initialized with complement
£.init. The users then perform actions and propagate them across
the lens. An action consists of producing an edit dz (or dy), apply-
ing it to one’s current replica x (resp. ), putting the edit through
the lens to obtain an edit dy (resp. dz), and asking the user on the
other side to apply dy (dx) to their replica. In the process, the inter-
nal state c of the lens is updated to reflect the new correspondence
between the two replicas. We further assume there is some consis-
tency relation K between X, Y, and C, which describes the “syn-
chronized states” of the replicas and complement. This gives us a
natural way to state the totality requirement discussed above: if we
start in a consistent state, make a successful edit (one that does not
fail at the initiating side), and put it through the lens, the resulting
edit is guaranteed (a) to be applicable on the receiving side and (b)
to lead again to a consistent state. We make no guarantees about
edits that fail at the initiating side: these should not be put through
the lens.

3.5 Definition: A symmetric edit lens between modules X and Y
consists of a complement set C', a distinguished element init € C,
two stateful monoid homomorphisms = € 90X x C — 9Y x C
and € € 9Y x C' — 90X x C, and a ternary consistency relation
K C|X| x C x |Y] such that

e (initx,nit, inity ) € K,

e if (x,c,y) € K and dz « is defined and S(dm, c) = (dy, '),
then dy y is also defined and (dz z,c’,dy y) € K;

e if (z,c,y) € K and dy y is defined and <(dy, c)
then dz x is also defined and (dz z,c’,dy y) € K

(dz, ),

Since symmetric edit lenses are the main topic of this paper, we
will generally write “edit lens” or just “lens” for these, deploying
additional adjectives to talk about other variants such as the state-
based symmetric lenses of [7].

The intuition about K’s role in guaranteeing totality can be
formalized as follows.

3.6 Definition: Let / € X <« Y be a lens. A dialogue is a
sequence of edits—a word in (0X + 0Y)*. The partial function
Lrun € (0X +0Y)" — X x £.C x Y is defined by:

(initx, L.init, inity )

£.=(dz1, ¢) = (dy1,c1)
(dz1 zo, c1,dy1 yo)

Lrun(e) =

Lrun(w) = (zo, ¢, yo)
L.run(inl(dzr)w) =

Lrun(w) = (o, ¢, Yo)
Lorun(inr(dyr )w) =

L.&(dyr, ¢) = (dz1,c1)
(dz1 xo, c1,dy1 yo)

3.7 Theorem: Let w be a dialogue and suppose that £.run(w) =
(z, ¢, y)—in particular, all the edits in w succeed. Let dz € X
be an edit with dz x defined. If (dy, ¢') = £.=(dx, c) then dy y is
also defined. An analogous statement holds for <.

Beyond its role in guaranteeing totality, the consistency relation
in a lens plays two important roles. First, it is a sanity check on
the behavior of = and &. Second, if we project away the middle
component, we can present it to programmers as documentation
of the synchronized states of the two replicas—i.e., as a partial
specification of = and &.

2011/11/12



One technical issue arising from the definition of edit lenses is
that the hidden complements cause many important laws—Ilike as-
sociativity of composition—to hold only up to behavioral equiva-
lence. This phenomenon was also observed in [7, §3] for the case of
symmetric state-based lenses, and the appropriate behavioral equiv-
alence for edit lenses is a natural refinement of the one used there
(taking the consistency relations into account).

3.8 Definition [Lens equivalence]: Two lenses k,¢ : X <> Y are
equivalent (written k = /) if, for all dialogues w,

o k.run(w) is defined iff £.run(w) is defined;

o if k.run(w) = (wz,c,y) and Lrun(w) = (z',d,y’), then
z=2"andy = 7/'; and

o if k.run(w) = (z,¢,y) and L.run(w) = (2',d,y’) and dz =
is defined and £.= (dz, ¢) = (dy, -) and k.= (dz,d) = (dy/, .)
then dy = dy/’, and the analogous property for <.

(Note that the second clause is actually implied by the third.)

Since the complements of the two lenses in question may not
even have the same type, it does not make sense to require that
they be equal. Instead, the equivalence hides the complements,
relying on the observable effects of the lens actions. However, by
finding a relationship between the complements, we can prove lens
equivalence with a bisimulation-style proof principle:

3.9 Theorem: Lenses k,¢ : X <> Y are equivalent iff there
exists a relation S C X X k.C x £.C' x Y such that (1)
(initx, k.init, L.init, inity) € S; (2) if (z,¢,d,y) € S and
dzx x is defined, then if (dy1,c¢’) = k.=(dz,c) and (dy2,d’) =
£.=(dx, d), then dy; = dy» and (dz z,¢/,d’,dy1 y) € S; and (3)
analogously for &.

4. Edit Lens Combinators

We have proposed a semantic space of edit lenses and justified its
design. But the proof of the pudding is in the syntax—in whether
we can actually build primitive lenses and lens combinators that
live in this semantic space and that do useful things.

Generic Constructions As a first baby step, here is an identity
lens that connects identical structures and maps edits by passing
them through unchanged.

idx € X & X }

C = Unit

K — {(@,(),2) | € X}
=(dz, () = (dz,())

E(dr, () = (da. ()

Here and below, we elide the definition of the ¢nit component when
C = Unit = {()}. since it can only be one thing.

In lens definitions like this one, the upper box serves both as
a typing rule and as the implicit statement of a theorem saying
that the functions in the box below it inhabit the appropriate types
and satisfy the corresponding lens laws. For lens combinators, the
definition also makes an implicit statement about compatibility
with lens equivalence. For brevity, and because they are generally
straightforward, we usually elide these theorems.

Now for a more interesting case: Given lenses k and ¢ connect-
ing X to Y and Y to Z, we can build a composite lens k; ¢ that
connects X directly to Z. Note how the complement of the com-
posite lens includes a complement from each of the components,
and how these complements are threaded through the = and &
operations.

ke X <Y leY - Z
kite X 72
c = kCxtC
init = (k.init, £.init)
K = {(= (Ckvc[) z) |
y. (z,cr,y) €
(yaclv ) }

=(dz, (ck,ce)) = let (dy,c,) = k. é(dx ck) in
let (dz,c}) = £.=(dy, c¢) in
(dz, (cx, cr))

&(dz, (e, c0)) = let (dy, cp) = £.&(dz, ¢0) in
let (dz, c},) = k.<(dy, cx) in
(dz, (g, cr))

As might be expected, composition of lenses is associative, and
the identity lens is a unit for composition. However, as mentioned
above, we need to be a little careful: it is not quite the case that
(k;£);m = k; (£;m)—in particular they have different comple-
ments. Instead, what we can show is that (k; £); m = k; (€; m).

Another simple lens combinator is dualization: for each lens
f € X < Y, we can construct its dual, £ € Y <« X, by
swapping = and &.

For the next definition, observe that the set Unit gives rise to
a trivial monoid structure and, for any given set X and element
z € X, a trivial module with initial element x, which we write
Unitzcx. When context clearly calls for a module, we will abbre-
viate Unit (ye ymis to simply Unit.

Now, for each module X, there is a ferminal lens that connects
X to the trivial Unit module by throwing away all edits.

termx € X + Unit

C = Unit
K = X x Unit x Unit
=(dz, () = (L,())
<1L0) = @)

The disconnect lens that we saw in §2 can be built from term. The
term lens is also unique (up to equivalence): the implementation
of = is forced by the size of its range monoid Unit, and the
implementation of < is forced by the homomorphism laws.

There is a trivial lens between any two isomorphic modules.
Formally, a module homomorphism (f, h) between modules X and
Y is a function f € X — Y and a monoid homomorphism
h € 80X — 9Y such thatf(initx) = inity and f(dzz) =
h(dz) f(x). There is an identity (Az.z, Adz.dz) for every mod-
ule, and the point-wise composition of module homomorphisms is
also a homomorphism, so modules form a category. If module ho-
momorphisms (e,g) € X — Y and (f,h) € Y — X satisfy
(e,9); (f,h) = idx and (f,h);(e,g) = idy, then (e,g) is an
isomorphism and (f, h) is inverse to (e, g). Now:

(f,hye X =Y (f,h)isinverse to (f~1,A™")
180(f,n) € XY

Unit

{(z,0, f(z) |z € X}
= (h(dz), ()
(dy, () = (h™"(dy), ()

T =Q
&
|

2011/11/12



The fact that this always defines a lens, plus a couple of other easy
facts, amounts to saying that there is a functor from the category of
module isomorphisms to the category of edit lenses.

Generators for free monoids For writing practical lenses, we
want not only generic combinators like the ones presented above,
but also more specific lenses for structured data such as products,
sums, and lists. We show in the rest of this section how to de-
fine simple versions of these constructors whose associated edit
monoids are freely generated. §5 shows how to generalize the list
mapping lens to other forms of containers, and §6 discusses edit
languages with nontrivial laws.

Given a set G, we write G* for the set of finite sequences
of elements of G. We write ¢ for the empty sequence and g to
denote both a generator element and the single-element sequence
containing such an element. Sequence concatenation is denoted by
juxtaposition; when discussing a sequence g; - - - gn, We also use g
to refer to the entire sequence. The notation |g| means the length
of a sequence: |g1 - - - gn| = n. It is easy to show that G* together
with sequence concatenation and ¢ forms a monoid.

It is often convenient to specify the behavior of a monoid ho-
momorphism by giving its output on each generator. Given a func-
tion f;, € G — M on generators, the monoid homomorphism
f € G* — M is defined by f(¢) = 1 and f(g1 - gn) =
fa(g1)f(g2 - gn). Similarly, given a stateful function f, € G X
C — M x C, we can define a stateful monoid homomorphism
f€G" xC — M x C by setting f(e,c) = (1,¢) and

f(g1---gn,c) =let (m',¢') = f(g2--- gn, ) in
let (mﬂvc”) = f9(917 C,) in
(m//m/ C//)
Tensor Product Given modules X and Y, a primitive edit to a

pair in | X| x |Y| is either an edit to the X part or an edit to the Y’
part.

G% .y = {left(dz) | dz € 9X} U {right(dy) | dy € 9V}

We can turn these generators into a module by giving specifying a

*

monoid action for the free monoid (G ,)*:
left(dz) ©Og (z,y) = (dz z,y)
right(dy) ©g (2,y) = (z,dy y)
The full module is then given by
X @Y = (|X| x |Y], (initx, inity), (G% y)", ®) .

Now we can build a lens that “runs two sub-lenses in parallel” on
the components of a product module. The = and < functions are
defined via stateful monoid homomorphism specifications.

ke X <7 leY < W
kQLeXQRY < ZW

c = k.Cx{C
init = (k.init, L.init)
K = { ((x,z),(ck.,c[),(y,w)) |

(z,cr,y) € k.K
A(z,ce,w) € LK }
=, (left(dz), (ck,ce)) = let (dz,cf) = k.=(dz, ) in
(left(dz), (ck, ce))
=, (right(dy), (ck,ce)) = let (dw, ;) = £.=(dy, ¢¢) in
(right(du), (cx, )
= similarly

ke X <Y lteZ W
kole X Z+YoW

C = kC+1LC
init = inl(k.init)
K = {(inl(x),inl(c),inl(y))
| (z,c,y) € k.K}
U {(inr(z2),inr(c),inr(w))
| (z,c,w) € L.K}
Ck = k.init
1) = l.init

=, (switchrr(dz),inl(c)) = let (dy,c') = k.=(dz, c)
in (switchrz(dy), inl(c"))
=, (switchg (dz),inr(c)) = let (dy,c') = k.=(dz, cx)
in (switchgyr (dy), inl(c"))
=, (switchrr(dz),inl(c)) = let (dw,c') = £.2(dz, ce)
in (switchp gr(dw), inr(c’))
=, (switchgr(dz),inr(c)) = let (dw,c’) = £.2(dz, co)
in (switchrr(dw), inr(c’))

=, (stay, (dz),inl(c)) = let (dy,c) = k.=(dx, c)
in (stay, (dy), inl(c"))
=, (stayz(dz),inr(c)) = let (dw, ') = £.=(dz, c)
in (stay(dw),inr(c'))
=,(e,0) = (fail, ¢) in all other cases
&, is analogous

Figure 3: The sum lens

4.1 Theorem:

e k ® {is indeed a lens.

elfk=Fkand/=/0 thenkRL=k' Q.

® id ®id = id.

o (k®0); (K @l) = (kK)® (61).

* ((k®¥0) ® m);i804ss0c = £ Q (k ® m), where assoc is the
isomorphism between (X ® Y) ® Z and X ® (Y ® Z) for all
XY, Z.

® (k® {0);is0swep = £ ® k, where swap is the isomorphism
between X x YV andY x X.

Proof: For the first statement (being a good lens), first note that
preservation of monoid multiplication is immediate since 9(X ®Y")
is free. It remains to show that the consistency relation of k£ ® ¢
is preserved and guarantees definedness. This is direct from the
definition and the assumption that £ and ¢ are lenses.

The remaining statements are direct consequences of the defi-
nitions, together with Theorem 3.9; for example, the third equiva-
lence can be witnessed by the simulation relation

{((z,v), (¢, d), (¢, d)), ((¢, ), (d, d)), («", y")) |
A", y). (w,c,x") €K A (2, ,2") € K. K
Ay, d,y) ELKA(Y,d,y")el . K}. O

As in [7], the tensor construction is not quite a full categorical
product, because duplicating information does not give rise to a
well-behaved lens—there is no lens with type X <> X ® X that
satisfies all the equivalences a lens programmer would want.

However, tensor product does yield various symmetric monoidal
categories of edit lenses; for lack of space we omit the details.

Sum We now present one way (not the only one—see footnote 4)
of constructing a sum module and a sum lens. Given sets of edits
0X and 0Y, we can describe the generators for the free monoid of

2011/11/12



edits to a sum by:
G%y = {switchir(dz) | i€ {L, R}, dz € 0X}
U {switch;r(dy) | i € {L,R},dy € 9Y'}
{stay, (dz) | dz € OX} U {stayg(dy) | dy € Y}
U  {fail}

The idea is that edits to a sum can either change just the content or
change the tag (and therefore necessarily also the content, which is
superseded by the given new content). That is, we want the “atoms”
of the edit language to express the operations of editing content and
switching sides. This gives us the switchr r, switchry,, and stay
edits. For present purposes, we could leave it at this and define the
monoid of edits to be the free monoid over just these generators.
However, in Section 6 we will introduce a more compact represen-
tation that allows multiple edits to be combined into one, and this
representation will give rise to the other two switch operations; for
example, switchy,, represents a switchr, r followed by a switchgy,.
To avoid having two similar but subtly different definitions, we in-
clude these edits here in the basic generators as well. Finally, we
introduce an always-failing edit to represent sequences of edits that
are internally inconsistent—e.g., a switch to the left side followed
by an attempt to apply an edit which stays on the right side. These
intuitions are formalized in the application function:

switchr(dz) @4 inl(x)

C

inl(dz init x)

switchrr(dy) @g inl(x) = inr(dy inity)

switchrr(dz) Oginr(y) = inl(dz initx)

switchrr(dy) Oginr(y) = inr(dy inity)
stay; (dz) Oginl(z) = inl(dzx)
stayg(dy) Oginr(y) = inr(dyy)

e®g v undefined in all other cases

We then define the sum of modules X and Y as
X @Y = (|X|+|Y],inl(initx), (GXy)", ®).

We now wish to give a lens combinator k & ¢ that runs lens k on
the parts of edits that apply to inl values and ¢ on the parts of edits
that apply to inr values.* Figure 3 shows the full definition.

4.2 Theorem: When k and / are lenses, so is k @ /.

Proof: The homomorphism laws are again trivial. We must show
that the consistency relation K is maintained. We have

(initxggz, init, inityegw)
= (inl(initx),inl(k.ingt), inl(inity)) € K,

since (initx, k.init,inity) € k.K. So it remains to show
that that = and < preserve this relation. We need only con-
sider the case where we begin with an arbitrary consistent triple
(inl(x),inl(c),inl(y)) € K anddv € X @ Z for which dv inl(x) is

defined. (The cases where the triple is of the form (inr(x), inr(c), inr(y))

€ K are similar, swapping k and £ in some places; the cases where

4In [7], there is some discussion regarding “forgetful” and “retentive”
sum lenses, with the distinction revolving around what to do with the
complement when an edit switches between sides of the sum. For state-
based lenses, lenses on recursive structures like lists were given in terms
of lenses on the non-recursive structure, and the retentive sum lens gave
rise to a retentive list mapping lens whereas the forgetful sum lens gave
rise to a forgetful list mapping lens. The poor alignment strategies given
in that paper were mediated somewhat by the retentive map’s ability to
use complements from previous versions of a list, making retentive sums
somewhat more attractive than forgetful ones. In this presentation, however,
the mapping lens has much better alignment information, so we eschew the
more complicated retentive lenses in favor of simpler forgetful versions.

leX &Y
/e X* < Y™

C = 0.C"

nat = €

K = {(=@,c.y) | [z| = |c| = |y| A

V1<p<|z|. (p,cp,Yp) € L.K}
=,(mod(p,dx),c) = let (dy,c,) = £.2(dz,¢p) in

(mod(p, dy), c[p — ¢]))
whenp < n

=,(mod(p,dx),c) = (fail,c) whenp > n

=, (fail, c) = (fail,¢)

=,(dz, c) = (dz,dz ¢) in all other cases
& similar

Figure 4: The list mapping lens

we are considering a dv € Y @ W are similar, but use < instead
of = everywhere.) Since dv inl(x) is defined, there are three forms
of dv to consider: switchyz(dz), switchzr(dz), and stay, (dz).
Here is the most interesting case:

Case dv = switchy, 1, (dx): We define (dy, ¢') = k.putr(dz, k.init)
and (z',y") = (dz initx,dy inity ). Since k is a lens, we know
(initx, k.init, inity) € k.K and therefore that (z’,c’,y’) €
k.K. This means (inl(z’),inl(c"),inl(y’)) € K. Since (k &
0).=(dv,inl(c)) = (switchpr(dy),inl(c’)) and dvinl(z) =
inl(z") and switchrr(dy)inl(y) = inl(y’), this shows that K is
preserved in this case. U

Like the tensor product, this lens combinator is a bifunctor:
id®id =idand (k® 0); (K ') = (k; k') & (4; ).

List module Next, let us consider lists. Given a module X, we
define the basic edits for lists over | X | to include in-place modifi-
cations, insertions, deletions, and reorderings:

G'' = {mod(p,dz) | p € Nt dz € HX}

{ins(?) | i € N} U {del(i) | i € N}
{reorder(f) | Vi € N.f () permutes {1,...,i}}
{fail}

For compatibility with the generalization to arbitrary containers in
§5, we slightly change the behavior of these operations from what
we saw in §2. Insertions and deletions are now always performed at
the end of the list; to insert in the middle of the list, you first insert
at the end, then reorder the list. The argument 4 to ins(7) and del(z)
now specifies how many elements to insert or delete.

ccci

mod(p,dz) Og 1+ Tn =21+ Tp—1 (AT Tp) Tpt1 -+ Tn
ins(2) @g T1 T = X1 - T, INALX - - - IVt x
—_———
del(i) ©g 1+ Tn =21+ Tn—i
reorder(f) Og X1 T = Tfn)(1) " Lf(n)(n)

fail ©g 1 -+ -z,  undefined

We take mod(p,dz) ®4 x to be undefined when p > |z|, and
similarly take del(i) ©4 « to be undefined when i > |z|. The list
module is then X* = (| X[, ¢, (GX")*, ).

Mapping lens The list mapping lens £* uses £ to translate mod
edits from X to Y and vice versa (Figure 4). Other kinds of
edits (ins, del, and reorder) are carried across unchanged. The
notation ¢[p +— ¢;] in the rule for mod edits means “the list that
is just like ¢ except that the element in position p is replaced

by ¢, When translating non-modification edits, we update the

2011/11/12



partition € (XY ) < X" ®@Y"

C = {L,R}*
mit = ¢
K = {(2, mapyg(2), (lefts(2), rights(2))) | z € (| X] +[Y])"}
=, (mod(p, dv), c) = (fail,c) when p > |¢| 1
= ¢(mod(p, €), c) = (g,¢) when1 < p < || @
= ,(mod(p, dvdus), c) = (d'd,c”) where 1 < n (d,cd") = =,(mod(p, dvs), c) 3)
1<p<le| (d'c")=2=4(mod(p,dv),c)
=, (mod(p, switch;x (dv)),c) = (dadido, c[p — k]), where (pr,pr) = count(p, c) do = mapy ;. wg(a)(del' (D) @
dz = tag(k, mod(pk, dv)) di = map,y tag(k,a) (ins'(pr))
=4(mod(p,stay;(dv)),c) = (tag(j, mod(p;,dv)),c), where (pr,pr) = count(p, c) ®)
=, (mod(p, fail), c) = (fail,c) ©)
=,(ins(), c) = (left(ins()), ins(4) c) ©)
=, (del(3),c) = (dido,del(7) ¢), where ¢ = reverse(c) do = left(del(nz—1)) ®8)
(nr,ngr) = count(i+1,¢') di = right(del(nr—1))
=, (reorder(f), c) = (drdg,c’), where h = iso(c) ¢ = reorder(f) c ©
R =iso(c") (nr,nr) = count(|c|,c)
R =R f(lel); b (VL#M) =Ap.p
dr, = left(reorder(fz)) fr(nr) = inl; A”; out
dr = right(reorder(fr)) fr(ng) =inr; h”’;out
=,(fail, c) = (fail,c) (10)
&,(e,0) = (g,¢) an
&, (dvdus, c) = (d'd,c") whenn > 1, where (d,c') = &, (dvs c) (d',d")=<«&,(dv,c) (12)
&, (left(mod(p, dz)), c) = (stay,(mod(p’,dx)), c), where p’ = iso(c ) L(inl(p)) (13)
&, (left(reorder(f)), ¢ = (reorder(f'),c), where g(inr(p)) = inr(p) f'(n#lc]) =X p.p (14)
glinl(p)) = inl(F(ne)()  F(lel) = higi bt
(nr,ngr) = count(|c|, c) h =iso(c)
&, (left(ins(i)), c) = (ins(7),ins(i) ¢) (15)
&, (left(del(0)), c) = (g,0) (16)
&, (left(del(7)), c) = (d” del’(p), "), where h = iso(c) (nr,ngr) = count(|c|, c) a7
p=hi(inl(ne)) (") = £,(d,c)
¢ =del'(p) c d' = left(del(i—1))
when 0 <7 <np+1
&, (left(del()), c) = (fail, ¢) otherwise (18)
&, (left(fail), c) = (fail,¢) 19
&, (right(dy), ¢) similar
Figure 5: The partition lens
tagof(inl(z)) = L map,(e) =€ D p<m=n
tagof(inr(y)) = R map;(cw) = f(c) map;(w) cycle, (n)(m) = z +1 f))t}?errxije "
e I:afts(s) i € g rights(e) = reverse(ci - -+ Cn) = CnCn—1-""C1
Ief}:s((.ln ((xiw; = Ia:f: Es() w) r|g:ts(|nl( T)w) = |ght;( w) deI’(p) ( ) reorder(cycle,)
efts(inr(y)w) = lefts(w) ri i [
Y rights(inr(y)w) = y rights(w) ins'(p) = reorder(An. cycle,(n )~ 1)ins(1)
tag(L,dx) = Ieft(dx) OUt(Inl( )) ISO(C) /\p let (nLynR) _ count(p, )
tag(R, dy) = right(dy) out(inr(y)) = { inl(ny) ¢, =1L
count(p,e) = (1,1) count(1,c) = (1,1) inr(nr) ¢ =R

count(p,c1-+-cn) = let (np,nr) = count(p—1,c2---¢p) in { EZE ;;’:}B Ei é
, =

Figure 6: Supplementary functions for partition

8 2011/11/12



{ LL 3 R L }

inl(Schumann)

inl (Beethoven) Schumann Kant
inr (Kant) Beethoven
q Frege
inr (Frege) Dvorak

inl(Dvorak)

Figure 7. A consistent triple for the partition lens.

complement in a way almost identical to the way the two replicas
are updated; to reflect this similarity, we use edit application from
the Unit} ;nice.c module to define the new complement.

PFartition lens Figures 5 and 6 give the definition of a list parti-
tioning lens that (as we saw in §2) separates a list of tagged ele-
ments into those tagged inl and those tagged inr. We write fail to
stand for left(fail)right(fail) when defining = ;. Additionally, as
with the mapping lens, we consider the complement to belong to a
module; this time, to the module UnitT,c(;, gy-

These figures may be a bit intimidating at first, but there is noth-
ing very deep going on—just some everyday functional program-
ming over lists. To illustrate how it all works, let’s consider a few
example invocations of the partition lens. Each of them begins
with the consistent triple illustrated in Figure 7. Note that only the
middle part—the complement—is actually available to the partition
lens as it runs: its other input is just an edit.

As a warm-up, consider a simple edit: changing Dvorak’s name
to Dvorék (with correct diacritics) in the left repository. The edit de-
scribing this has the form mod(5, stay (dn)), where dn describes
the string edit to the name. To translate this edit, we first need to
translate the index 5 to an index into the list of composers in the
right-hand repository (line 5 in Figure 5). We can do this by simply
counting how many composers appear up to and including Dvorak,
that is, how many L values appear in the complement list up to in-
dex 5—in this case, 3. We then wrap this index up, along with the
dn edit, in a new edit of the form left(mod(3,dn)); the comple-
ment need not change because we have not changed the structure
of the lists. This pattern—count to translate the index, then re-tag
the edit appropriately—can be generalized to all modifications that
stay on the same side of the sum; the count and tag functions de-
fined in Figure 6 implement these two steps.

The left-to-right translation of other in-place modifications, in-
sertions, and deletions and the right-to-left translation of in-place
modifications, insertions, and deletions to either list are built from
the same primitives, using count to translate indices and re-tagging
edits with tag. In a few cases, we use some edit “macros”: since
insertions and deletions always happen at the end of a list, we write
del’ and ins’ for edits that do some shuffling to ensure that the in-
serted or deleted element moves to the appropriate position.

Perhaps the most interesting of these is an in-place modification
to the left repository that switches sides of a sum (line 4). For
example, suppose we want to replace Beethoven with Plato. The
edit to do this has the form mod(2, switchy r(dn))—that is, at
position 2, switch from an inl to an inr. Here, the translated edit
must do four things: delete Beethoven from the left list, insert a
new element into the right list, re-tag dn so that it changes the
new element to Plato, and finally fix up the complement to match
the new interleaving. As before, we can use count to translate the
position 2 in the interleaved list into a position in the left list in the
right replica. But then we hit a minor snag: deletions only occur
at the end of a list. The solution is to first reorder the list, so that
Beethoven appears at the end, then delete one element. Figure 6
defines the cycle function, which constructs permutations to do
this reordering. The function cycle,,(n) permutes lists of size n by

moving position p to the end of the list, and shifting all the other
elements after p down one to fill in the resulting hole. For example,
cycle,(5) looks like this:

p 1 2 3 4 5
cycle,(5)(p) | T 3 4 5 2

So, we can delete position p by first reordering with reorder(cycle,,)
then deleting one element with del(1). The del’(p) macro encap-
sulates this pattern; there is a similar pattern for inserting a new
element at position p encapsulated by ins’(p). Finally, since posi-
tion 2 in the interleaved list corresponds to positions 2 and 1 in the
left and right non-interleaved lists, respectively, the final edit can be
written as right(mod(1, dn)) right(ins’ (1)) left(del’(2)). To fix up
the complement, we can simply set the flag at position p to match
the new tag: in our case, position 2 is now an inr, so we should set
C2 ::]%.

The most delicate cases involve translating reorderings. Con-
sider an edit to the right repository that swaps Schumann and Dvo-
rak. One way to write this edit is in terms of a function that swaps
indices one and three for lists of size at least three (and does nothing
on lists of size smaller than three):

4 — n>3 1,3
row={ 377 n250re il

The edit itself is then left(reorder(f)). Our job is now to com-
pute some f’ for which reorder(f’) swaps inl(Schumann) and
inl(Dvorak) in the left repository (line 14). There is one wrinkle:
f and f’ are parameterized by the length of the lists they permute.
Translating f naively would therefore seem to require a way for
f' to guess the number of composers in lists whose lengths do not
match that of the complement. Fortunately, f’ need only behave
correctly for exactly those lists that are consistent with the current
complement, for which our “guess” about how many composers
there are is guaranteed to be accurate. So we need only construct a
single permutation (and use, say, the identity permutation for all in-
consistent list lengths). We use the count function to construct this
permutation. It is convenient to derive an isomorphism between po-
sitions in the left repository and positions tagged by which list they
are indexing into in the right repository; the iso function shows how
to use count to do this. In our example, the resulting isomorphism
looks like this:

left | 1 2 3 1 5
right [ inl(1) inl(2) inr(1) inr(2) ini(3)

We can use f(3) as a permutation on the inl elements, defining
g(inl(p)) = inl(f(3)(p)) and g(inr(p)) = inr(p). Then, to find out
where position p in the left repository should come from, we can
simply translate p into an index into the right repository using iso,
apply g to find out where that index came from, and translate back
into the left repository using iso~ . Expanding the table above with
these translations yields:

left 1 2 3 4 5
iso(left) inl(1) inl(2) inr(1) inr(2) inl(3)
g(iso(left)) inl(3) inl(2) inr(1) inr(2) inl(1)

iso~ ! (g(iso(left))) 5 2 3 4 1

This swaps indices 1 and 5, so our final f’ looks like:

, 6 — n=>5A 1,5
f(n)(p)Z{ » ! n¢5v£;h5{

Translating a reordering of the left repository follows a simi-
lar path (line 9): restrict the reordering to lists consistent with the
current complement, then compose the permutation with isomor-
phisms between the indices in the two repositories. There is one
subtlety here: a reordering of the list in the left repository may

2011/11/12



shuffle which positions are inl’s and which are inr’s. As a result,
we must take care to construct two separate position isomorphisms:
one for “before” the reordering, and one for “after.”

5. Containers

The list mapping lens from the previous section can be general-
ized to a much larger set of structures, called containers, that also
includes trees, labeled graphs, etc. We will also provide a gen-
eral construction for “reorganization lenses” between different con-
tainer types (over the same type of entries). Together with composi-
tion and tensor product, this will provide a set of building blocks for
constructing many useful lenses. The reorganization lenses also fur-
nish further examples of lenses with nontrivial complements. (Only
a small part of §6 depends on this material; it can safely be skimmed
on a first reading.)

Containers were first proposed by Abbott, Altenkirch, and
Ghani [1]. The idea is that a container type specifies a set I of
shapes and, for each shape 4, a set of positions P(i). A container
with entries in X and belonging to such a container type com-
prises a shape 4 and a function f : P(i) — X. For example,
lists are containers whose shapes are the natural numbers and for
which P (i) = {0,...,i—1}, whereas binary trees are containers
whose shapes are prefix-closed subsets of {0,1}" (access paths)
and where P(i) = 1 itself. Even labeled graphs can be modeled
using unlabeled graphs as shapes. One can further generalize the
framework to allow the types of entries to depend on their position,
but for the sake of simplicity we will not do so here.

In the present context, containers are useful because they allow
for the definition of a rich edit language, allowing the insertion
and deletion of positions, modification of particular entries, and
reorganizations such as tree rotations. We can then define lenses
for containers that propagate these general edit operations.

In the case of state-based symmetric lenses [7], it has been ob-
served that lens iterators akin to “fold left” for inductive data struc-
tures also permit the definition of powerful (state-based) lenses. In
the edit-based framework iterators are less convenient because it is
unclear how edits in an arbitrary module should be propagated to,
say, list edits in such a way that the rich edit structure available for
lists is meaningfully exploited. (Of course, it is possible to prop-
agate everything to a “rebuild from scratch” edit, thus aping the
state-based case.)

In the following we slightly deviate from the presentation of
containers from [1, 7] in that we do not allow the set of positions to
vary with the shapes. We rather have a universal set of positions P
and a predicate live that delineates a subset of P for each shape
7. We can then obtain a container type in the original sense by
putting P(i) = {p | p € live(i)}. Conversely, given a container
type in the sense of [1], we can define P = {(¢,p) | p € P(4)}
and live(z) = {(i¢,p) | p € P}. Furthermore, as we already did
in [7], we require a partially-ordered set of shapes I and ask that
live be monotone. Formulating this in the original setting would
require a coherent family of transition functions P(i) — P(i)
when ¢ < ¢/, which is more cumbersome. Another advantage of the
present formulation of container types is that it lends itself more
easily to an implementation in a programming language without
dependent types.

5.1 Definition: A container type is a triple (I, P, live) comprising
(1) a module I of shapes whose underlying set is partially ordered
(but whose action need not be monotone); (2) a set P of positions;
and (3) a liveness predicate in the form of a monotone function
live € I — P(P) which tells for each shape which positions
belong to it.

If T = (I, P, live) is a container type and X is a set, we can
form the set T'(X) of containers of type 7" with entries from X by

setting T'(X) = >, live(é) — X. Thus a container of type T
and entries from X comprises a shape i and, for every position that
is live at i—i.e. every element of live(i¢)—an entry taken from X.

Our aim is now to explain how the mapping X — T'(X) lifts to
a functor on the category of lenses—i.e., for each module X, how
to construct a module 7°(X') whose underlying set of states is the
set of containers 7'(|X|), and for each lens £ € X < Y, how to
construct a “container mapping lens” 7'(¢) € T(X) <> T(Y). We
will see that this mapping is well defined on equivalence classes of
lenses and respect identities and composition. We begin by defining
a module structure on containers.

5.2 Definition: Let 7' = (I, P, live) be a container type. An edit
di € OI is an insertion if di i > ¢ whenever defined. It is a
deletion if dv @ < ¢ whenever defined. It is a rearrangement if
[live(di 4)| = |live(?)| (same cardinality) whenever defined. We
only employ edits from these three categories as ingredients of con-
tainer edits; any other edits in the module will remain unused. This
division of container edits into “pure” insertions, deletions, and re-
arrangements facilitates the later definition of lenses operating on
such edits.

5.3 Definition: If (I, P, live) is a container type, di € I, and
f €I — P — P,then we say f is consistent with di if, whenever
di i is defined, f(¢) restricted to live(7) is a bijection to live(di i).

A typical insertion could be the addition of a node to a binary
tree, a typical deletion the removal of some node, and a typical
rearrangement the rotation of a binary tree about some node.

5.4 Definition [Container edits]: Given container 7" and module
X we define edits for T'(|X|) as follows (we give some intuition
after Definition 5.5):

{fail}
U {mod(p,dz) | p € P,dz € 0X}
U {ins(dz) | di an insertion}
U {del(d?) | di a deletion}
U {rearr(di, f) | f consistent with di}

In the last case, often either di will only be defined for very few
i or f will have a generic definition, so the representation of a
rearrangement edit does not have to be large.

5.5 Definition [Edit application]: The application of an edit to a
container (4, f) is defined as follows:
fail (4, f) is always undefined
mod(p, dz) (i, f) = (i, f[p — dx f(p)]) when p € live(i)
ins(de) (2, f) = (di i, )
where f’(p) = if p € live(s) then f(p) else init x

del(di) (i, f) = (di 4, f]live(di i)
rearr(di, f) (3,9) = (di 4, g)
where g/(P) = g(f(#)(p))

The mod(p, dz) edit modifies the contents of position p according
to dz. If that position is absent the edit fails. The shape of the
resulting container is unchanged. The ins(d7) edit alters the shape
by di, growing the set of positions in the process (since di ¢ > 7).
The new positions are filled with initx. The del(d7) edit works
similarly, but the set of positions may shrink; the contents of deleted
positions are discarded. The fail edit never applies and will be
returned pro forma by some container lenses if the input edit does
not match the current complement.

The rearr(di, f) edit, finally, changes the shape of a container
but neither adds nor removes entries. As already mentioned, a
typical example is the left-rotation of a binary tree about the root.
This rotation applies whenever the root has two grandchildren to
the left and a child to the right. For this example, one may worry

2011/11/12



leX &Y T = (I, P, live) a container type
TW) eT(X) - TY)

C = T(.C)
init = (inits, Ap. £.init)
=4(mod(p,dz), (i, f)) = (mod(p,dy), (i, f))
when p € live(i) and where
[ = flp=c], (dy, ) = £.2(dx, f(p))
g(mod(p,dx), (i, f)) = (fail, (i, f)) if p & live(i)
J(ins(di). (i, )) (ins(di).
(di i, g[p—L.init]))
when ds ¢ is defined
=, (del(di), (i, ) (del(di), (di 4, gllive(di 1)))
when ds ¢ is defined
=,(rearr(di, h), (i,9)) = (rearr(di,h),
(di 4, Ap-g(h(i)(p))))

when di ¢ is defined

H ==

=
=

=,(dz,¢) = (fail, ¢) in all other cases
Eo(=,-) = analogous
K = {(( 1), (i, 9), '))\ €l

(7
N 9(p). () € LK)

Figure 8: Generic container-mapping lens

about the size of f, since it affects many positions; however, it can
be serialized to a small, three line if-then-else. That we do not, at
this point, provide edits that copy the contents of some position into
other positions; their investigation is left for future work.

We define the monoid OT'(X) as the free monoid generated by
the basic edits defined above. In Section 6 we discuss the possibility
of imposing equational laws, in particular with a view to compact
normal forms of container edits.

Setting initr(x) = (initr, Ap.initx) when T = (I, P, live)
completes the definition of the module T'(X).

5.6 Example: For any module X we can construe the list module
X* as a particular container type (I, P, live) where I = N with 91
generated by ¢ € Z with ¢ ® n = max(i + n,0). Furthermore,
P = Nand live(n) ={0,...,n — 1}.

Then all list edits arise as specific container edits, however, the
generic formulation of container edits also includes some esoteric
edits, such as ins(10-(—10)) which brings a list to minimum length
10 by appending default elements if needed.

In Figure 8 we define the mapping lens turning 7°(—) into an
endofunctor on the category of lenses. We note that this is only the
second lens to have a nontrivial complement (after partition).

Given that this definition looks complex at first we state and
prove explicitly that it is indeed a lens.

5.7 Theorem: If T' = (I, P, live) is a container and £ is a lens so
is T'(£). Moreover, T'(—) respects lens equivalence and preserves
the identity lens and composition of lenses (up to equivalence), and
thus defines a functor on the category of lenses.

We can also define a restructuring lens between containers of
different container type but with the same type of entries, i.e.
between T'(X) and T'(X) where T = (I, P,live) and T' =
(I', P',live’). For this to be possible, we need a lens £ between
I and I' and for any triple (i,c,i') € £.K a bijection f; .. €
live'(i') ~ I|ve( ). The complement of this lens consists of those
triples (i, c, i), and thus “knows” at any time which bijection links
the positions at either end.

One typical instance of this kind of lens is list reversal; another
is a lens between trees and lists which ensures that the list entries

T = (I, P, live) a container type
T' = (I', P’,live’) a container type
teleT
[T, 7](¢) e T(X) + T"(X)

C
it
K= {((7" f)7 (iv ) 7:/)7 (i/7 f/))
| (i,¢,") € LK A Vpelive! (i'). f(fieir () = ['()}
=, (fail, z) = (fail,x)
=,(mod(p,dz), (i,¢,i")) = (mod(fZ il ,(p),dx), (i, c,4)
when p € I|ve(i)

LK

(initr, €.9nit, init )

=, (ins(di), (4, ¢,1")) = (rga.rr(ll,fil)ijns(di’),
(did,c,di" "))

=, (del(di), (i, ¢,4")) = (rearr(1, fq)del(d7’),
/ (dii,c,di’ i))
3g(rearr(dia f)7 (7’7 C77: )) = (rearr(di 7f"”)7

(dii,c,di’ "))

see below for fi, fa, fr
in the last three clauses: (di’, ') = £.=(di,c)
=,(de, (4,¢,1")) = fail in all other cases
- = = analogous

g

Figure 9: Container restructuring lens

agree with the tree entries according to some fixed order, e.g. in-
order or breadth first. Although the live positions of the containers
to be synchronized are in bijective correspondence, there is—e.g.
in the case of list reversal—no fixed edit that, say, a “modify the
second position” edit is mapped to. Indeed, the restructuring lens
we are about to construct can be seen as a kind of state-indexed
isomorphism, but the full scaffolding of edit lenses is needed to
make such a notion precise.

We also require that £ maps insertions to insertions, deletions to
deletions, and rearrangements to rearrangements. Note that this is
well-defined on equivalence classes of lenses.

Given these data, we define the restructuring lens in Figure 9,
with a few supplementary definitions below. The families of bijec-
tions f;, fq, fr must be chosen in such a way that the container edits
in which they appear are well-formed (this is possible since di’ is
an insertion, deletion, or restructuring as appropriate) and such that
the following three constraints are satisfied: in each case i, 1, etc.,
refer to the current values from above and p € live’(di’ ¢’) is an
arbitrary position.

fz(dll Zl)(p) = fl_cll (fdz i,¢/,di’! i/ (p))

when fdz ie! dil i (p) c |IV€(Z)
fd(dil Z/)(p) = f’;c,z (fdl i,¢/,di’ i’ ( ))
Fe(di" Y p) = f7 L (F@) (fai s,0000 0 (0)))

The propagated edits are supposed to be applied to a container
of the current shape ', so these arbitrary decisions do not really
matter; nevertheless it would be nice if we could be a bit more uni-
form. This is indeed possible in the case where ¢ is an isomorphism
lens, but we refrain from formulating details.

The bijection f; contains a httle more choice, namely the be-
havior on the 7" positions in £, i, air o (live(di @) \ live(é)). For-
tunately, they all contain initx so that the choice does not affect
the resulting state after application of the edit.

We illustrate the propagation of an ins(d¢) edit in the particular
case where we are synchronizing a tree with the list formed by its
in-order traversal. Thus, I = N; P = N; live(s) = {p | p < i}
and I’ comprises prefix closed subsets of {0,1}*; P’ = {0,1}*;

2011/11/12



live’(i") = 4’. The monoid I has increment and decrement op-
erations; the monoid A1’ has operations for adding and removing
nodes in leaf positions and also for rotating tree shapes.

The lens £ € T <« I’ does
not know anything about the in-
tended application; it has a triv-
ial complement Unit and merely
maintains the constraint that the
list shape and the tree shape have
the same number of positions. It
has some freedom how it translates list edits; e.g., it might add and
remove tree nodes at the left.

The family of bijections f;.;; models the in-order
correspondence; thus, for exam-
ple if i = 4 and i =
{£,0,1,11} the bijection would
be as shown above. (For illus-
tration we also indicate possi-
ble X-contents of the positions.)
Formally, we have f,.,, =
{(0,0),(1,2), (2,1), (3, 11)}.

Now suppose that d¢ ¢ = ¢ + 2
and that di’ (the result of di propagated through /) installs two
children at the leftmost node. In our in-order application we then
have f4;:,0 av i+ = {(0,00), (1,0), (2,01), (3,¢), (4,1), (5,11)}
and after applying both ins(di) and ins(di’) we are in the as-yet-
inconsistent situation depicted above.

To restore consistency we
also apply rearr(1, fr) where
fr(i) = {(00,0), (0,¢), (01, 1),
(e,11), (1,00), (11,01)}. We
could also have chosen f,.(i') =
{...,(1,01), (11,01)}; this is
precisely the additional freedom
of choice. Of course f,(i") for

" 4 4’ is also completely uncon-
strained. After applying rearr(1, fr)
consistent state.

3| BB/ ]

. . >
SEEBEE

. . o
SEBEEEE

<

e end up with the desired

6. Adding Monoid Laws

The edit languages accompanying the constructions in the previous
two sections were all freely generated. This was a good place to
begin as it is relatively easy to understand, but, as discussed in
§3, there are good reasons for investigating richer languages. This
section takes a first step in this direction by showing how to equip
the product and sum combinators with more interesting edits.

Given modules X and Y, there is a standard definition of mod-
ule product motivated by the intuition that an edit to an | X| x |Y|
value is a pair of an edit to the | X | part and an edit to the |Y'| part.
The monoid multiplication goes pointwise, and one can define an
edit application that goes pointwise as well.

X Q@Y = (|X]| x |Y], (initx, inity ), 0X @ Y, Oxgy)
1uen = (1m,1N)
(m,n) -megn (M',n') = (mm',nn’)
(dz,dy) Oxey (z,y) = (dzz,dyy)
One might wonder whether the standard definition has any con-
nection to the definition we give earlier. One way to bridge the gap

is to add equational laws to the free monoid.” The equations below
demand that left and right be monoid homomorphisms, and that

5 To make this formal, treat the equations as a relation between words in the
free monoid; take the reflexive, symmetric, transitive, congruence closure
of this relation; and quotient by the resulting equivalence relation.

they commute:
left(1)
left(dz)left(dz) = Ieft(da:dx )
right(1)
right(dy)right(dy’) = rlght(dydy)
left(dz)right(dy) = right(dy)left(dz)

It is not hard to show that the free monoid subject to the above
equations is isomorphic to the natural monoid product.

However, it is not obvious that the definitions relying on the
free monoid product remain well defined after imposing the above
equations. In particular, we must check that any monoid homomor-
phisms we defined respect these laws. For homomorphisms f spec-
ified via specification of fg, it is enough to prove that, for each
equational law g = ¢’, the specification respects the law—i.e.,
1(9) = 1(g)-

For example, to check that we can create a well-defined tensor
product module that includes the above equations, we must show
that ©4 respects the equations. For the commutativity equation, we
must show

left(dz) Ogright(dy) ©g (, y) = right(dy) O4left(dz), Og (z, ).

Simple calculation shows that both sides are equal to (dz z, dy; y),
so this law is respected; the rest follow similar lines.

Most importantly, we must check that the = and < functions
are still monoid homomorphisms; indeed, this check makes these
equations interesting as a specification: in addition to the usual
round-tripping laws we expect of state-based lenses, each non-
trivial equation in a monoid presentation represents a behavioral
limitation on lenses operating on that monoid. Take again the com-
mutativity law:

left(dz) right(dy) = right(dy) left(dx)

The force of this law is that lenses operating on a monoid including
this equation must ignore the interleaving of left and right edits:
those two edits are treated independently by the lens.

6.1 Lemma: If k£ and ¢ are lenses, then the = gand &, functions
defined above for k& ® ¢ respect all of the above equations.

Adding the first four equations lets us create a projection lens
out of smaller parts by observing that there are some new isomor-
phisms available. Let f be the isomorphism between X ® Unit and
X. Similarly, let g be the obvious isomorphism between Unit ® Y
and Y. We can then define m1 = (idx ® termy);isos and
mo = (termx ® idy ); isog4. Thus, 71 first throws away any infor-
mation in the right-hand part of a tuple with termy-, then collapses
the (now degenerate) tuple with f.

We conjecture that these additional laws introduce enough
isomorphisms that the tensor product gives rise to a symmetric
monoidal category—that is, that tuples may be reordered and re-
associated freely, provided the lens program acting on them is re-
ordered and reassociated accordingly—but we have not explored
this possibility fully.

We can perform a similar process for sum edits. We add the
following equations:

!/

switch i (m) switch;; (m switch;x (m)
(

switch;;

)
") = switch;; (mm”)

!/

) =

(m) stay,;(m’) = switch;; (m
stay, (m) switch;;(m’) =
( )

stay, (mm')

stay, (m) stay,(m

d d' = fail in all other cases

2011/11/12



This explains why we did not originally choose to have just two
combinators, switch;, and switchr, which would be interpreted
as “switch to the left (respectively, right) side and reinitialize, no
matter which side we are currently on.” The idea of the above
equations is that they allow us to collapse any sequence of edits
down into a single one; if we only allowed ourselves switch;, and
switch g forms, this would not be possible. In particular, we need to
represent the fact that a stay;, edit followed by a switch; edit fails
when applied to a value tagged with inr.

As with products, we must check that the remaining definitions
are well-formed. In particular, it can be shown that, in the module
defined above for sums, ©4 respects the above equations, and that,
if k and £ are lenses, then (k & ¢).=, and (k @ £). &, respect the
above equations.

Unfortunately, the partition lens as given does not respect
the above equations. It seems possible to enforce them by also
imposing equations on list edits that coalesce adjacent reorder
operations. We leave this to future work.

In a similar vein, we can impose equations on container edits—
indeed, we need them, since we would like lists to form a special
case of containers so that, possibly after restructuring, we can
partition and reassemble containers, too. These equations would in
particular allow us to coalesce adjacent reorderings and to reorder
insertions and deletions with other edits so that insertions and
deletions always come first. This would also give rise to a compact
normal form of container edits. Again, we leave this to future work.

7. From State-Based to Edit Lenses and Back

In [7], we introduced a state-based framework for bidirectional

transformations called symmetric lenses. We refer to them here as

state-based symmetric lenses. Recall from [7] that a state-based

symmetric lens £ between sets X and Y comprises a set of comple-

ments C, a distinguished element missing € C, and two functions
putr € XxC—-YxC

putl € Y xC—XxC

satisfying the following round-tripping laws:

putr(z,c) = (y,c)
putl(y,c’) = (z, ')

(PUTRL)

putl(y,c) = (z,c’)
putr(z,c) = (y,c)

Equivalence of state-based symmetric lenses is defined through the
existence of a simulating relation between the respective comple-
ment sets that relates the missing elements and is preserved by
putl, putr. A characterization in terms of “dialogues” is also given.
State-based symmetric lenses modulo equivalence form a category
(they compose) and support a variety of constructions, in particular
tensor product, sum, lists, trees, and container types.

Now, for any set X we have the monoid X whose elements
(edits) are lists of elements of X modulo the equality xx = x. An
action of X on X is defined by ex = z and (zw)y = = where
x € X, w € X*. Note that this is well defined as x(zy) = = = xy.
If, in addition, we have a distinguished element z € X, we thus
obtain a module denoted X, where | X;| = X and initx = x and
0X, =0X.

Let ¢ be a state-based symmetric lens between X and Y along
withelements x € X andy € Y satisfying £.putr(x, £.missing) =
(y, ¢.missing). We then define a symmetric edit lens O, be-
tween the modules X, and Yy, as follows: (1) (924¢).C = £.C;
(2) (Ozyl).init = L.missing; (3) (Oxyl).=(g,¢) = (g,¢); (4)
(Ozyl).=(zw,c) = (yv,c’) where (0zy0).=(w,c) = (v,c)
and £.putr(z,c’) = (y,c"); (5) analogous definitions for <; and

(PUTLR)

6) K = {(z,c,y) | L-putr(z,c) = (y,c)}. Ozyf is a symmet-
ric edit lens and the passage from ¢ to O¢ is compatible with the
equivalences on symmetric lenses and symmetric edit lenses.

Let X be a module. A differ for X is a binary operation dif €
X x X — 0X satisfying dif (v, z")r = 2’ and dif (z,z) = 1.
Thus, a differ finds, for given states x, 2’, an edit operation dz such
that dr z = ' and dz is “reasonable” at least in the sense that if
2 = x’ then the produced edit is minimal, namely 1. For example,
the module X, for set X and z € X admits the canonical differ
given by dif (z, ') = 2’ if x # 2’ and dif (x, T) = €, otherwise.

Given an edit lens ¢ between modules X and Y, both equipped
with differs, we define a symmetric lens || between | X | and |Y'| by
(1) [£].C = | X| x £.Cx |Y]; (2) |£].init = (initx, L.init, inity);
3) [¢].putr(z, (zo, ¢, y0)) = (dy yo, (z,¢’,dy yo)) where dz =
dif (zo, z) and (dy, ¢') = £.=(dz, c); and (4) an analogous defini-
tion of |£|.putl This defines a symmetric lens |¢| between | X | and
|Y'|, and the passage ¢ — |¢| is compatible with lens equivalence.

7.1 Theorem: Let XY be sets with distinguished elements = and
y and equip the associated modules X and Y, with their canonical
differs. The constructions | — | and 9, then establish a one-to-one
correspondence between equivalence classes of edit lenses between
X, and Y}, on the one hand, and state-based lenses between X and
Y, on the other.

We conjecture that this “isomorphism” between state-based and
certain edit lenses is also compatible with various lens constructors,
in particular tensor product and sum.

8. Related Work

The most closely related attempt at developing a theory of update
propagation is [4] by Diskin et al. Their starting point is the obser-
vation (also discussed in [2]) that discovery of edits should be de-
coupled from their propagation. They thus propose a formalism, sd-
lenses, for the propagation of edits across synchronized data struc-
tures, bearing some similarities with our edit lenses. The replicas,
which we model as modules, are there modeled as categories (pre-
sented as reflexive graphs). Thus, for any two states x, x’ there is
a set of edits X (x,z"). An sd-lens then comprises two reflexive
graphs X, Y and forany z € X andy € Y aset C(x,y) of “cor-
respondences” which roughly correspond to our complements. For-
ward and backward operations similar to our < and => then com-
plete the picture. No concrete examples are given of sd-lenses, no
composition, no notion of equivalence, and no combinators for con-
structing sd-lenses; the focus of the paper is rather on the discovery
of suitable axioms, such as invertibility and undoability of edits,
and a generalization of hippocraticness in the sense of Stevens [13].
They also develop a comparison with the state-based framework
(cf. §7 above). In our opinion, the separation of edits and corre-
spondences according to the states that they apply to or relate has
two important disadvantages. First, in our examples, it is often the
case that one and the same edit applies to more than one state and
can be meaningfully propagated (and more compactly represented)
as such. For example, while many of the container edits tend to
only work for a particular shape, they are completely polymorphic
in the contents of the container. Second, the fact that state sets are
already categories suggests that a category of sd-lenses would be
2-categorical in flavor, entailing extra technical difficulties such as
coherence conditions.

Meertens’s seminal paper on constraint maintainers [10] dis-
cusses a form of containers for lists equipped with a notion of edits
similar to our edit language for lists, but does not develop a general
theory of edit-transforming constraint maintainers.

A long series of papers from the group at the University of
Tokyo [6, 8, 11, 12, 15, etc.] deal with the alignment issue us-
ing an approach that might be characterized as a hybrid of state-

2011/11/12



based and edit-based. Lenses work with whole states, but these
states are internally annotated with tags showing where edits have
been applied—e.g., marking inserted or deleted elements of lists.
Barbosa et al.’s matching lenses [2] ofter another approach to deal-
ing with issues of alignment in the framework of pure state-based
lenses.

9. Conclusion

A prototype Haskell implementation of edit lenses is underway,
as well as a demo showing how to construct GUIs connected by
lenses. The main required extension to the theory presented here are
extending the above constructions from algebraic data structures to
strings, following Boomerang [3], and identifying good heuristics
for converting unstructured string edits into structured edits of
the form expected by the lenses above—a form of parsing and
unparsing.

Containers offer a convenient abstraction on which to build
generic lens combinators, as discussed in §5. To use these com-
binators in practice, we need to show how to instantiate the module
of shapes for the kind of container we are interested in, as we did
for lists. In the future, we would like to explore several other sorts
of shapes; in particular, edit languages for graphs may be useful in
model-driven development, while edits for relations are relevant to
database applications.

Acknowledgments We are grateful to Nate Foster and Perdita
Stevens for productive discussions of many points, to the members
of the Penn PL Club for comments on an early draft, to the organiz-
ers and participants in the January 2011 Dagstuhl seminar on Bidi-
rectional Transformations for creating a stimulating environment
for work in this area, and to the POPL reviewers for their thoughtful
suggestions. Our work has been supported by the National Science
Foundation under grants 0534592, Linguistic Foundations for XML
View Update, and 1017212, Algebraic Foundations for Collabora-
tive Data Sharing.

References

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers:
constructing strictly positive types. Theor. Comput. Sci., 342(1):3-217,
2005.

[2] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg,
and Benjamin C. Pierce. Matching lenses: Alignment and view up-
date. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), Baltimore, Maryland, September 2010.

[3

=

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses for
string data. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), San Francisco, California, January
2008.

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig,
Frank Hermann, and Fernando Orejas. From state- to delta-based
bidirectional model transformations: The symmetric case. Technical
Report GSDLAB-TR 2011-05-03, University of Waterloo, May 2011.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to the view update prob-
lem. ACM Transactions on Programming Languages and Systems, 29
(3):17,2007. ISSN 0164-0925. Extended abstract presented at Prin-
ciples of Programming Languages (POPL), 2005.

[6] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), Baltimore,
Maryland, September 2010.

[7] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric
lenses. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Austin, Texas, January 2011.

[4

=

[5

[8] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A pro-
grammable editor for developing structured documents based on bi-
directional transformations. In Partial Evaluation and Program Ma-
nipulation (PEPM), pages 178-189, 2004. Extended version in Higher
Order and Symbolic Computation, Volume 21, Issue 1-2, June 2008.

[9] David Lutterkort. Augeas: A Linux configuration API, February 2007.
Available from http://augeas.net/.

[10] Lambert Meertens. Designing constraint maintainers for user interac-
tion, 1998. Manuscript.

[11] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective
language for reversible computation. In Seventh International Confer-
ence on Mathematics of Program Construction (MPC), 2004.

[12] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic
approach to bi-directional updating. In ASIAN Symposium on Pro-
gramming Languages and Systems (APLAS), pages 2-20, November
2004.

[13] Perdita Stevens. Bidirectional model transformations in QVT: Seman-
tic issues and open questions. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS), Nashville,
TN, volume 4735 of Lecture Notes in Computer Science, pages 1-15.
Springer-Verlag, 2007. ISBN 978-3-540-75208-0.

[14] Perdita Stevens. Towards an algebraic theory of bidirectional transfor-
mations. In Graph Transformations: 4th International Conference,
Icgt 2008, Leicester, United Kingdom, September 7-13, 2008, Pro-
ceedings, page 1. Springer, 2008.

[15] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, and Hong Mei. Towards automatic model synchronization
from model transformations. In IEEE/ACM International Conference
on Automated Software Engineering (ASE), Atlanta, GA, pages 164—
173, 2007.

2011/11/12



