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Abstract

We investigate the problem of formalizing and modeling edits to tree-
based data structures, evaluating the relative merits of three different
approaches inspired by version control systems and database management.
The first provides a theoretical backdrop, anchoring the discussion; the
second boasts simplicity as well as a tractable algorithm for computing
an approximately minimal edit; the third allows for great expressiveness,
but sacrifices the tractability of some problems.

1 Introduction

Early programs were short and static. The infrastructure made frequent changes
impractical (at the earliest, not only were punch cards hand assembled, but the
bits themselves were hand written), and hardware limitations forced programs
to be minimal both in code size and complexity. But progress was speedy; the
burgeoning size of hard drives, processor memory, and processor speed enabled
first assemblers that allowed more frequent code changes, then compilers that
allowed larger code bases, then IDEs that integrated compiler tools into the text
editor and made frequent, sweeping changes to the code-base possible and easy.

Sharing large, highly-variable code bases soon became quite a chore; keeping
everybody synchronized became a serious logistical problem. Sending every-
body involved an entire copy of an updated code base was impractical. Various
heuristics for computing diffs were developed, culminating in the well-known
Hunt-McIlroy algorithm for computing longest common subsequences. [13] This
algorithm was then used in the development of revision control tools that eased
the sharing and tracking of these diffs.

This was one of the first times edits were considered as first-class entities
in computer science, but by no means the last. Below, we will focus on three
major modern users of first-class edits: revision control systems, text editors,
and databases.

As mentioned above, revision control systems have a history that is deeply
intertwined with that of diff-like tools for computing longest common subse-
quences. Early systems like RCS, CVS, and (to a somewhat lesser extent) Sub-
version use diff to track changes to each file in a repository separately. However,
over time, the consensus among revision control system designers has begun to
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current location

Figure 1: A simple linear edit history

lean towards the idea that the system should track changes to an entire code-
base as a whole; that is, that changes to a single file are meaningless outside
the context of the remainder of the codebase.

For example, one common task in a C-based project would involve adding
a function declaration to a header file foo.h and a corresponding function def-
inition to an implementation file foo.c. Using only diff-style edits, these two
files are separate objects, tracked separately; the consequence of this is that it is
perfectly reasonable in that model to ask the system to roll back the additions
to foo.h without rolling back foo.c in the corresponding way. Expressing the
constraint that the two files should be modified together steps out of the diff
model of tracking simple sequences.

To mimic a filesystem, a useful model for these systems treat trees as the
data type of interest, and build a model of edits to these trees. The kinds of
edits we consider below we will all be of this form; while evaluating them, we will
want to keep in mind some of the common tasks that revision control systems
are asked to perform:

• Rolling back ill-advised changes

• Detecting changes—that is, given two different trees, finding a smallish
edit that changes one to the other

• Reconciling changes made in parallel by different authors

• Tracking the provenance of particular parts of the tree

Tracking edits explicitly can also be useful, on a smaller scale, in text editors.
A key feature of editors is its undo and redo functionality; different editors offer
wildly varying levels of support for this. The baseline functionality involves
modeling the code as a simple sequence of characters and tracking a “linear”
history (as in Figure 1). The undo and redo actions simply move the pointer
forward and backward in the history; making a change other than a redo might
(for example) discard the future part of the history.

There are at least two orthogonal directions this baseline can be improved.
First, the history itself can be given additional structure: rather than discarding
the “redo future” whenever making a change, the model could simply branch,
resulting in a richer edit history than a straight line – perhaps a tree or even
a DAG. (Figure 2 gives an example of this.) It then becomes natural to ask
whether changes from one branch can be migrated to another branch. Many
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current location

Figure 2: A more complex edit history

papers examine this question [1, 2, 4, 10, 14]; one of the major lessons is that
representing edits with rich data about the intention of the user makes the
algorithms much more predictable and usable.

Thus, a second possible axis of improvement, which we will focus on in this
paper, is modifying the edits to operate on parse trees rather than simple char-
acter sequences. Note that the requirements for these tree edits are somewhat
different from the requirements cited for revision control systems:

• Rolling back ill-advised changes

• Visualizing changes in a human-readable way

• Relocating changes within the history meaningfully

In particular, computing edits given two trees is no longer a key feature; the
editor itself can track the actual edits made by the user. Tracking provenance
is likewise unneeded.

The final application area we will consider is that of an XML-backed database,
backing, say, a web application. The edits, therefore, are in fact a form of com-
munication between the web application and the database, rather than being
manipulated in memory (or on disk) from within a single program, as in re-
vision control systems or text editors. Moreover, the bulk of the edit will be
hand-composed by a human (namely, the programmer developing the web ap-
plication) – though it may have some holes or variables to be filled in at run
time. For our purposes, we may well assume that an edit will be executed much,
much more frequently than it is composed.

As a result, the requirements of an edit language for databases are radically
different than those for revision control systems or text editors. In particular,
a web application often has multiple users, and consequently may submit many
edits to the database simultaneously; the database should behave as though
they were submitted in some order (though it may execute them concurrently).
Combining these characteristics, we find that doing some one-time analysis of
edits can be very worthwhile if the results of the analysis can be used to speed
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up the application of those edits at runtime, because the benefits of the analysis
will be reaped many times, but the cost paid only once. So a successful edit
language should have these properties:

• Human-writable, text-based syntax

• Compact representation for inter-program communication

• Speedy concurrent apply operation (perhaps via a helpful static analysis)

(Note that in particular this application may not place such high priority on
the ability to roll back changes.)

There is unending variety in edit languages. Indeed, even when considering
the data objects that the edits are intended to modify, there are a huge number
of different models possible: binary (opaque) data, sequences, sets, trees, rela-
tions, DAGs, graphs, and more. Each of these could presumably have a whole
collection of reasonable choices of edits from simple to expressive. On one end
of the spectrum, we have the diff format for editing sequences; on the other
end lies programs written in (say) C that edit any data type we could imagine;
somewhere in the middle lie relations and the relational calculus. Surveying all
the known edit languages is well beyond the scope of this paper. Instead, we
will consider only node-labeled, unordered trees as our data model, and consider
just a few languages that cover a range of the expressiveness spectrum.

We will also narrow our focus to only three edit languages. The Löh, et
al paper strives to introduce a framework for reasoning about the behavior
of revision control systems [15]. It will include more precise definitions for
words we have so far been using informally: edits, edit history, conflict and
compatibility, merging, synchronization, and so forth. The second language
(as described in the Chawathe and Garcia-Molina paper [6]) is designed to
include an expressive enough core that machine-generated edits can encapsulate
the “idea” or “meaning” of a change while keeping tractable computation of a
(nearly) minimal diff between old and new trees. Finally, the third language
(introduced in the Ghelli, et al paper [12]) is designed to make deciding whether
two edits depend on each other—to be more precise, whether they commute—
tractable, while emphasizing the inclusion of high-level features designed to
make the language human-writable.

Before diving in, we briefly describe a few typographic and metasyntactic
conventions. Variables d and e will correspond to concrete pieces of data and
edits, respectively. Edits will have a partial function apply associated with
them; apply(e, d) = d′ indicates that edit e transforms data d to data d′, and
apply(e, d) = ⊥ indicates that edit e is incompatible with data d. The definition
of apply will vary between sections. Additionally, we will assume an infinite
supply L of labels; we will use metavariable ` for an element of this set. We will
use 4 for the symmetric difference and # for set disjointness.
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2 Semantics and conflict detection

We will begin our discussion by developing a formal framework in which we can
define precisely terms like edit history, edit, working copy, merge, and conflict.
(We will also sometimes use repository interchangeably with edit history, and
patch interchangeably with edit.) The aim of the current exercise is to develop
a semantic model we can use to unify a variety of edit languages, following the
development of Löh, et al [15].

2.1 Data and edits

As mentioned above, we will use node-labeled trees as our data model; in fact,
we will demand that node labels have two parts: a name drawn from L and
some contents drawn from another arbitrary set C. (For example, when this
is modeling a file system, L would be the set of valid filenames, and C would
include information like permissions and the bytes in the file.) Moreover, we
will use a somewhat idiosyncratic representation of these trees; we will defend
the idiosyncrasies in Section 2.3.

For our purposes, a tree is a set of assertions A, where each a ∈ A has the
form

a ::= `p → `c | ` contains c

c ::= (elements of C),

and where A conforms to the well-formedness constraints given in Figure 3.
We assume the existence of a distinguished label root ∈ L, and adopt the
convention that variables free in the premise of an inference rule are bound
universally, while variables free in the conclusion (that are not bound in the
premise) are bound existentially. Rule Parent says that each node has at most
one parent. The UniqC rule tells us that each node is labeled with at most
one piece of content. Rules Full1, Full2, and Reachable together say that
every node is labeled and reachable from root. Finally, rule Cycle rules out
cycles.

At its core, an edit to this structure is simply an object (S, T ) with a set of
assertions S to remove and a set of assertions T to add. We could then say that
the patch is applicable to d when S ⊂ d, that is, when all of the assertions that
the patch aims to remove are available.

However, this proposal has a small flaw: it makes no mention of the invari-
ants of d. Indeed, there are certain kinds of patches which, no matter how we
construct them, cannot guarantee that it maintains the invariants whenever it
is applicable. Consider, for example, the edit that simply inserts a new top-level
node at ` with contents c, namely (∅, {` contains c, root→ `}). In most trees,
this is fine, but if the top-level node ` already exists with contents other than c,
then applying this patch would break UniqC. Thus, we would like a way to say
that certain assertions do not exist in the data, namely, any assertion assigning
contents to `.
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`p → `c
`′p → `c

`p = `′p
(Parent)

` contains c
` contains c′

c = c′
(UniqC)

root contains c
(Full1)

`→ `′

`′ contains c
(Full2)

` contains c

root = `0 ∧ (∀i ∈ {0, . . . , n}.`i → `i+1) ∧ `n = `
(Reachable)

∀i ∈ {0, . . . , n}.`i → `i+1

`0 6= `n
(Cycle)

Figure 3: Invariants that guarantee tree-structure

We can solve this problem by adding a third element to the definition of a
patch: a set of forbidden assertions. We thus arrive at our final definitions for
patch and applicability:

Definition 1. A patch or edit is a triple (S,E, T ) where S ∪ T ⊂ E.

We will sometimes write (S, , T ) when we mean (S, S ∪ T, T ).

Definition 2. An edit (S,E, T ) is applicable to data d when E ∩ d = S, and

apply((S,E, T ), d) =

{
d4S4T (S,E, T ) is applicable to d
⊥ otherwise

.

(It is worth pointing out that E ∩ d = S implies, in particular, that S ⊂ d.)
Revisiting the example above, we can now write

e1 = (∅, {root→ `} ∪ {` contains c′|c′ ∈ C}, {root→ `, ` contains c})

for the patch that adds a new top-level node. Unlike the previous proposal, we
can now state with confidence that whenever e1 is applicable to d, the application
apply(e1, d) will preserve the invariants of our tree structure. Of course, we can
still write patches that will violate the invariants; however, what we can do with
this definition of a patch that we could not do with the first proposal is we can
write patches for which we can prove that they will never violate the invariants
when they are applicable.
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For convenience, we will adopt the following abbreviation. When the itera-
tion domain is clear from context, we will write ∗ as a placeholder for all values in
that domain; so {` contains c′|c′ ∈ C} could be shortened to {` contains ∗},
for example. Each appearance of ∗ is independent. Using this notation, the
above patch would look like this:

e1 = (∅, {root→ `, ` contains ∗}, {root→ `, ` contains c})

As another example patch, consider adding a node lower in the tree, as a child
`c with contents cc of `p (which has contents cp). To preserve the invariants, we
must make sure not only that there is no node already at `c, but also that the
parent node `p exists. We can achieve this by putting `p contains cp in both S
and T , that is, by requiring `p contains cp to be in the data before application,
and to include it after application.

S2 = {`p contains cp}
E2 = {`p contains cp, ∗ → `c, `c contains ∗}
T2 = {`p contains cp, `p → `c, `c contains c}
e2 = (S2, E2, T2)

2.2 Constructors for common patches

With this framework in place, we can define some syntax for common tree
operations. None of the theory in the following parts depend directly on the
existence of this syntax or their interpretations, but they serve as a good way
of illustrating the concepts introduced so far. We will define syntax for four
operations: node insertion, updating the contents of a node, reparenting or
moving a subtree, and copying a subtree.

For insertion, we will allow the inserted node to “steal” some of its siblings
to use as children. That is, we will specify a label and contents for the new
node, a parent for the new node, and a collection of the parent node’s children
that should become children of the new node. We will also restrict the nodes
that we insert to ones not already in the tree. Thus:

insert(`p, `c, cc, Lc) = ({`p → ` | ` ∈ Lc},
{`p → ` | ` ∈ Lc} ∪ {`c → ` | ` ∈ Lc} ∪ {∗ → `c, `c contains cc},
{`p → `c, `c contains cc} ∪ {`c → ` | ` ∈ Lc})

Updating the contents of a node and moving subtrees are perhaps the easiest
of the patches to represent in our framework:

update(`, cold , cnew ) = ({` contains cold}, , {` contains cnew})
move(`c, `p, `

′
p) = ({`p → `c}, , {`′p → `c})

Copying a subtree is a bit more involved. We must first identify a subtree;
let us say that S is a set of assertions that satisfy the invariants given above
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(but with a different distinguished root; call it rootS). To copy this subtree,
we must choose new node labels. Suppose f : L → L is a relabeling function.
Lift f to an assertion relabeling function:

f(` contains c) = f(`) contains c

f(`→ `′) = f(`)→ f(`′)

Lift f to sets of labels and sets of assertions in the natural way. We will also
say that ` in S when ` → `′ ∈ S or `′ → ` ∈ S or ` contains c ∈ S. Then we
can define

copy(S, `, f) = (S,

S ∪ f(S) ∪ {∗ → `c|`c in f(S)},
f(S) ∪ {`→ f(rootS)})

for injective f . The additional constraint {∗ → `c|`c in f(S)} ensures that all
of the labels generated by f are actually new for the tree.

As a bonus, patches inverse gives us a node deletion operation for free (by
inverting insert), as well as a slightly weirder glue operation (from inverting
copy) which merges two identical subtrees, causing one to disappear.

2.3 A comment on flexibility

It is worth taking a moment to address the question that is no doubt on the
reader’s mind: why are we using such a weird representation of trees?

We could certainly have stated all of the definitions given so far in a more
familiar way: we could represent trees in the usual way as a collection of nodes
and edges, with a labeling function mapping node identifiers to their contents.
The definition of what a patch is would have to be modified, as well, to include
more specific notions of nodes and edges, ways of modifying the labeling func-
tion, and allow for more tree-specific preconditions. (For example, we might
choose analogs to the syntax given above as the primitive edits, or some variant
of them.)

The result, however, would have the definition of patch hopelessly interwoven
with the particular kind of data that patch is modifying. The presentation
here has the much nicer property of being data-agnostic when defining the
meaning and applicability of patches. As a result, the definitions above (and
the definitions below) can be used verbatim even if the data model changes: the
ideas here apply equally well to different data structures.

Of course, some things change. For different data structures, we must choose
a different collection of basic assertions, and rework the invariant that the whole
collection of assertions must satisfy. However, these extensions are generally
quite self-contained.
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2.4 Repositories and edit histories

The least well-understood ideas in revision-control system are those of merging
and conflicts. To work towards understanding these ideas, we now attempt to
define properly what a repository is and how repositories can interact.

Definition 3. A working copy is a tree (represented as described above).

Definition 4. A repository is a bag of patches.

These definitions are deceptively simple. For example, the simplest question
we might ask is, “How are repositories and working copies related?”. We can
build up a working copy by applying a sequence of patches to the empty set
of assertions. However, given only a repository, we are at something of an
impasse: the patches are unordered, and we are not at all guaranteed that if
we choose an arbitrary order that application will be well-defined, or even that
any ordering exists that makes application well-defined. We will therefore call a
repository consistent when there is an ordering of the patches 〈e0, . . . , en〉 such
that, given d0 = ∅, each di+1 = apply(ei, di) is well-defined, that is, di+1 6= ⊥.
It is convenient that if two such orderings exist, they result in the same final
working copy (thanks to the commutativity of 4).

With that concept in hand, we can define merges and conflicts.

Definition 5. Given two consistent repositories R1 and R2 and a set of patches
P ⊂ R2 \R1 that we would like to transport from R2 to R1, we say that R1 ∪P
is successfully merged when R1 ∪ P is consistent, and that it is in conflict
otherwise.

2.5 Discussion

We now have a firm definition for many of the ideas we will discuss in this paper.
The definitions are concise; they are elegant in their coverage and orthogonality.
However, there are a few significant shortcomings of the development so far.

The first is that a direct translation of these ideas to code would be im-
practical. Many of the common patches discussed above involve manipulating
infinite sets, which makes the problem a non-starter. Of course, this can be com-
bated in most cases by judicious choice of the representation of a patch. For
example, some algebraic data structure involving the patch constructors above,
patch composition, and patch inverse might be reasonable. The role of the work
discussed here, then, is to provide a model against which to verify the manip-
ulations of these higher-level representations. Similarly, a real implementation
would need a similar process for designing a more concrete representation of
repositories and working copies, appealing to the simple set-based model when
verifying algorithm correctness.

A second serious drawback is the simplicity of the working copy that we used.
However, this drawback is not inherent to the approach. Indeed, the exposition
by Löh, et al demonstrate extensions to the model that allow for line-based files,
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repository meta-data, and tagging. Some similar extensions are likely possible
for tracking patch ordering information, if that becomes desirable.

Finally, we have so far seen only very idealized definitions, and no practical
algorithms. For example, we have not discussed any practical way of checking
even the consistency of a given repository! In practice, we would also want
algorithms for computing minimal patch sets that successfully merge and for
comparing two working copies. These may be quite difficult in practice.

We can revisit the criterion discussed in Section 1 for revision control sys-
tems, text editors, and databases to evaluate how far this approach takes us.

One feature we want in revision control systems is the ability to roll back
ill-advised changes. The current approach actually gives us two ways of doing
this. The first is to add an inverse patch1 to the repository; this records that we
made an edit and later decided it was a bad idea. The second is to remove the
patch from the repository entirely; we can do this if we want to pretend that
we never did that edit in the first place. So that criteria seems well-covered.

We would also like an algorithm for detecting changes; the current approach
does not provide such a thing, but the approach of the next section attempts
to handle this. For reconciling changes made in parallel, the current approach
seems to give us a good definition of what it would mean to do this (that
is, a successful merge reconciles different repositories), but gives no hint of
how to implement a tractable merge algorithm. (This does not seem to be a
fundamental limitation of the approach – but simply something that has not yet
been solved.) Finally, the problem of tracking provenance is tackled somewhat
in the paper (though the details have been omitted here for space).

For text editors, in addition to rollback, we also want visualizations and
change relocation. While a good visualization is likely possible, none of the
discussion so far has focused on it; getting this right would likely take some
serious work. On the other hand, relocating changes within the history is almost
trivial in this framework. Since a repository is an unordered set of patches,
relocating a patch is the identity!

So this approach is a mild success for revision control and text editing; but it
seems to fail all three criteria for a database system. Patches of this form are not
particularly human-writable; as mentioned above, some serious thought would
be required even to represent these patches in memory; and finally, there is no
clear provision for concurrency. We will need another approach for databases.

3 Change detection

3.1 Problem description

In this section, we will develop one of the missing algorithms, following the
development of Chawathe and Garcia-Molina [6]. The problem statement is
fairly simple: we have two working copies (say, one from a repository and one

1The inverse of (S,E, T ) is (T,E, S), of course.
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from the disk), and we would like to generate a patch to convert one working
copy to the other.

Actually, the problem as stated is quite simple: given working copies S and
T , the patch (S, , T ) satisfies the criteria. It is nevertheless clearly not the
desired patch. To narrow the problem, we introduce a cost function for patches;
we then wish to find not just any patch, but a minimal-cost patch. We will allow
sequences of patches of the simple forms introduced in the previous section2.

Dozens of variants of this problem have been studied [5, 7, 8, 19]. Points of
variation include:

• The exact details of how each edit behaves often differ, though they are
usually fundamentally similar to the ones proposed above.

• Different approaches consider cost functions of varying sophistication.

• Some analyses assume that nodes have identities which can be compared
between working copies, and others do not make this assumption.

One of the major interactions between the first two variations involves how
the cost function behaves on moves and copies. Some analyses simply disallow
moves and copies (which is tantamount to simply making them prohibitively
expensive compared to deleting and inserting nodes). These analyses benefit
from much greater simplicity; however, the edits generated by them can be
somewhat surprising to human readers. On the other hand, making moves and
copies cheap enough that they must be considered during the analysis elevates
the problem to NP-hardness.

For now, we will make the following decisions:

• As mentioned above, we will use exactly the edits described in Section 2.

• We will use a fairly simple cost function: we will have constants ci, cd,
cm, cc, and cg for the costs of insert, inverse insert (i.e. deletion),
move, copy, and inverse copy (i.e. glue), respectively. For the cost
of an update, we will allow an arbitrary function cu : C ×C → R to give
the cost given old and new contents.

• We will not assume that nodes have persistent identities; the detection
algorithm will have to discover correspondences on its own.

In particular, the costs of move and copy will likely be quite low compared
to moving and copying entire subtrees. To avoid exponential running time, the
algorithm presented will have to make approximations in a few places; we will
point them out as they arise.

The solution we present has two main pieces: first, finding an alignment or
correspondence between the nodes of the two working copies, and then convert-
ing that alignment into a low-cost edit.

2We can apply a patch sequence by using apply on the composition of the patches in the
sequence. Deriving the triple for the composition of two patches is easy, but tangential.
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3.2 Alignment discovery

Define the operator (−)+ to add a fresh, newly-labeled, disconnected node to
a tree. (The contents of the node are immaterial for our purposes.) Below, we
will assume the freshly chosen label is +.

Definition 6. An alignment between d1 and d2 is a minimal edge cover of the
complete (unweighted) bipartite graph whose parts are the node labels of d+

1 and
the node labels of d+

2 .

Recall that an edge cover of a graph is a subgraph with all the nodes and
in which each node has degree at least one. A minimal edge cover is one which
achieves this with the minimal number of edges (for unweighted graphs) or at
minimal cost (for weighted graphs). Thus, an alignment gives a correspondence
between the nodes of the two graphs via its edges: if there is an edge (a, b) in
the alignment, we read this as meaning that the edit we compose should turn
node a in d1 into node b in d2. Similarly, an edge (a,+) indicates that the edit
we compose should delete a from d1, and an edge (+, b) indicates that the edit
should create b from scratch.

We will assign to each alignment the cost of the patch that results from that
alignment, and our goal will be to find a minimal alignment. We must therefore
turn to the problem of converting an alignment into a patch. What we will
hope to do is to assign a weight to each edge of the complete bipartite graph in
such a way that choosing a minimal cover of the weighted graph corresponds to
choosing a minimal alignment.

3.3 Converting from alignment to edit

One algorithm involves simply converting each edge in the alignment to a few
atomic updates, as well as some global ordering constraints on which edges’
updates should come earliest. It proceeds by case analysis on the edge:

• (+,+): No edit is needed for this edge.

• (a,+): Check which other nodes have edges to +. If cg < cd, that is,
inverse copy is cheaper than inverse insert, then look for another node
with the same label which we can glue to. If so, generate an inverse copy,
possibly prefixed by an update, and a constraint saying that the deletion
of the other node must come after these edits. If no suitable glue operation
exists, generate a deletion.

• (+, b): Similarly to the previous case, check which other nodes have edges
from +. If cc < ci, that is, copy is cheaper than insert, then look for
another node with the same label that we can copy. If so, generate a copy,
possibly followed by an update, and a constraint saying that these must
come after the creation of the node we are copying. If no suitable copy
operation exists, generate an insert.
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• (a, b): By far the most complicated of the bunch. Naively, this would be
a move or a copy possibly followed by an update. However, we should
first walk up the tree, so that we move or copy the highest possible node;
that node’s subtrees will then get moved or copied “for free”.

In fact, there is an additional wrinkle. Suppose there is a copy operation
high in the tree, and another operation moves a node somewhere in the
subtree that is being copied. We may now choose whether the copy that we
create includes or does not include that node by choosing to perform the
move before or after the copy. Thus, the algorithm must also include
some logic which evaluates such situations (called “free copies” in the
Chawathe, et al exposition) to minimize the number of move and copy
operations; we will skip the details of this logic.

After this algorithm runs, the edges are topographically sorted (using the con-
straints generated as the topography), and the atomic edits are sequenced in
the resulting order.

The algorithm itself may sound somewhat complicated, but the take-away
message is fairly simple: there is no such thing as the “cost of an edge” in the
complete bipartite graph. The cost of the updates generated by any particular
edge in this graph depends on what other edges exist in the particular alignment
chosen. As a result, we cannot simply give weights to the edges of the complete
bipartite graph as we had hoped.

The development by Chawathe and Garcia-Molina adopts a slightly more
subtle approach: each edge is given an upper and lower bound on the cost that
could be incurred by including a particular edge. It is then possible to prune
away obviously bad edges; as the complete graph is reduced, the bounds are
improved, making more pruning possible. We will skip the algorithms involved
in computing the initial bounds, pruning bad edges, and updating the bounds
as the graph evolves; they are clever, but not central to the idea.

When this process terminates, we have a small, bipartite graph, where each
edge is labeled with upper and lower bounds. We can use the lower bounds as
estimates of the cost each edge contributes to the alignment and run a standard
weighted matching algorithm to find an approximately minimal cover. Given
this cover, we can then generate the edit corresponding to the cover, as described
above.

3.4 Discussion

Before addressing the strengths and weaknesses of this approach, we pause to
explicitly identify the places in the algorithm where approximations are made
(leading to occasionally sub-optimal edits). First, the final edit we create is
generated from an alignment, and our algorithm for converting alignments into
edits is not surjective. For example, any single node in the tree gets assigned at
most one of the insert, inverse insert, move, copy, or inverse copy edits and at
most one update edit. Furthermore, the generated edit will never modify nodes
that are in neither tree – for example, by creating a new node, doing something

13



with it, and then deleting it. Finally, no generated edit will perform an inverse
copy on any node involved in a normal copy, either directly or indirectly. Each
of these restrictions may seem spurious, but in fact violating them can be useful;
thus, failing to generate edits that violate them is approximation number one.
Still, whether this approximation is good or bad is somewhat philosophical;
the edits that take advantage of the extra abilities outlined above are often
somewhat tricky, and may be surprising to a human reader.

The second approximation comes at the end, when choosing a minimal cover
in the weighted bipartite graph. Since there is no true weight for the edges in the
graphs, the labeling chosen (for example, using the lower bounds) must be an
approximation. In some cases, there may be few enough possible covers that we
can perform an exhaustive search, but often this will not be the case. Luckily,
this is an approximation with a knob that we can twiddle: we can improve our
edits (at the cost of runtime) by examining more possible covers and choosing
the minimal one out of the ones we examine.

The algorithm outlined above is admittedly quite complex. Because of the
two approximations mentioned, it is also somewhat heuristic – there are no
theoretical guarantees about its output, and so it could potentially have some-
what unpredictable behavior. Additionally, the complexity makes this approach
somewhat inflexible to variations in the set of edits. The conversion between
alignments and minimal edits as well as the cost estimation algorithms are fairly
dependent on using exactly the set of edits described above.

Despite these shortcomings, this approach also has several nice properties.
It is fairly fast; for n nodes, it is O(n3) worst-case, and experimentation suggests
that it is O(n2) for the typical case. The cost model proposed is fairly flexible, as
well. Moreover, detecting node moves and copies is a nice feature. For example,
in the revision control system domain, detecting moved or copied files is key for
maintaining provenance information. Many current systems either require the
user to manually specify moves and copies or apply some easily-fooled ad-hoc
heuristics for detecting them. Reliably analyzing this kind of code motion could
be very beneficial for these systems.

Thus, this approach remedies one of the shortcomings of the previous ap-
proach for use in a revision control system. Additionally, it makes some small
strides in the text-editor and database domain by providing a compact, con-
crete representation for edits. It is possible that either the alignments discussed
above or the actual edit sequences computed could be readily visualized by a
human; similarly, it seems much more feasible for a human to construct one
of these edits and for programs to exchange these edits than than it was for
edits of the form discussed in Section 2. Still, it leaves much to be desired for
human-writability; we will need to consider another approach for our edits to
be sufficiently high-level.
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4 Reordering

In the previous section, we discussed an edit language designed primarily for
machine generation, with a passing interest in human readability. As a result, we
ended up with a language that had a few very low-level editing capabilities, and
the only way of creating large-scale edits was by chaining together many, many
small-scale edits. In this section, we will instead focus on a language designed
for human generation. It will feature high-level abstraction mechanisms for
iteration and scoping, allowing for concise descriptions of large-scale edits. As
a trade-off, the kind of analysis described for finding minimal edits achieving a
certain effect will likely be impossible or intractable; nevertheless, another kind
of analysis for detecting whether two edits are sensitive to application order is
still possible.

This language was designed from the perspective of database maintenance.
There are a great variety of such languages, including myriad variants of SQL
(based on the relational calculus [9]), Datalog (for querying deductive databases [17]),
XQuery [3] (for querying XML databases) and variants that include updates [18],
LINQ [16] (which strives in part to unify several database implementations), and
so on. Our focus on tree-based data makes XML the most natural representa-
tion choice out of these; correspondingly, the language we describe below will
be inspired by XQuery.

Properly describing the behavior of the high-level edit language described
in the Ghelli, et al paper [12] involves first defining a low-level edit language
much like the one described in the previous section, so we will begin there – in
familiar territory.

4.1 Edit history

The data model we consider here is slightly more intricate than before. We
assume some primitive form of locations loc that can express at least URIs and
positions in code, a set of names Q, and a set of possible text content elements
T . Assertions look like this:

a ::= ∃` | `→ `′ | ` is from loc |
` has K | ` named Q | ` contains T

K ::= text | element

The invariants are listed in Figures 4 and 5. The invariants in Figure 4
essentially enforce tree-structure (though it allows for subtrees that are not ac-
tually connected to anything, which we will use later during deletion). We can
view the set of assertions of the form ∃` as being a set of nodes. Then rules
DomLoc, DomName, and DomKind say that is from assertions, named as-
sertions, and has assertions only apply to nodes that we know about. Together
with rules FuncLoc, FuncName, and FuncKind, this implies that the as-
sertions are actually partial functions whose domain is the set of nodes. Rule
TotKind further tells us that the has assertions actually represent a total
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` is from loc

∃`
(DomLoc)

` named q

∃`
(DomName)

` has k

∃`
(DomKind)

` is from loc ` is from loc′

loc = loc′
(FuncLoc)

` named q ` named q′

q = q′
(FuncName)

` has k ` has k′

k = k′
(FuncKind)

∃`
` has k

(TotKind)

`p → `c `′p → `c

`p = `′p
(Parent)

∀i ∈ {0, . . . , n}.`i → `i+1

`0 6= `n
(Cycle)

Figure 4: Routine invariants for XML-like trees

function. Rules Parent and Cycle are identical to the previous sections, and
say simply that each node has at most one parent and that there are no cycles.

The invariants in Figure 5 are slightly more interesting. Rule LocRoot
says that only root nodes have source location. Rules ElemNamed1 and
ElemNamed2 together say that nodes have a name iff they are element nodes;
similarly, TextFull1 and TextFull2 together say that nodes have textual
content iff they are text nodes. Finally, rule TextLeaf only allows leaf nodes
to be text nodes (that is, text nodes have no children).

From here, we will define a few atomic updates in the edit-triple form de-
scribed in Section 2. (When there may be some confusion, we will refer to these
as atomic edits or low-level edits. We will refer to expressions in the later edit
language as high-level edits.) When A is a well-formed set of assertions that
does not contain any assertions of the form ` → `′ or ` is from loc – that is,
when A contains a set of new nodes to add, possibly with text content or names,
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` is from loc

∀`′.¬(`′ → `)
(LocRoot)

` has element

` named q
(ElemNamed1)

` named q

` has element
(ElemNamed2)

` has text

` contains t
(TextFull1)

` contains t

` has text
(TextFull2)

`→ `′

` has element
(TextLeaf)

Figure 5: Interesting invariants of XML-like trees

but no edges or locations – we will allow them to be created:

insertn(A) = (∅, , A)

Given a node and a location, we can extend the location mapping. The
middle precondition ensures that we only give locations to root nodes.

insertr(`, loc) = ({∃`},
{∃`, ∗ → `, ` is from ∗},
{∃`, ` is from loc})

Given a set of assertions E of the form `p → `c, we can add those edges to
the working copy. Below, we will use the set N = {∃`p,∃`c|`p → `c ∈ E} of
nodes involved. We will also arrange for the addition of E to avoid creating
cycles (though we do not represent this fact in the definition of the edit).

inserte(E) = (N,

N ∪ {∗ → `c, `c named ∗ |`p → `c ∈ E},
N ∪ E)

Finally, we allow the deletion of edges. Nodes may be deleted, but only
by disconnecting their subtree from the top-level tree of interest – that is, by
deleting the edge from their parent – never by removing them from the working
copy. So, letting E be a set of assertions of the form `p → `c and using the N
abbreviation as before, we have

deletee(E) = (E ∪N, ,N)
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When we are writing an edit for a particular piece of data d, we will adopt the
notation deletee(S) to extract all the edges pointing to nodes in S from the
data and delete them, that is,

deletee(S) = deletee({`p → `c ∈ d | ∃`c ∈ S})

Later, the programs we write in the high-level language will be run on a
particular working copy to produce a sequence of these low-level edits, and it
will be this pairing of a working copy and edit sequence that we are interested
in analyzing.

Definition 7. A store history η is a pair (d, ē), where ē is a sequence of edits
〈e1, . . . , en〉 to be apply’d in turn.

We will occasionally abuse notation, and write f(η) when we really mean
f(d, ē) – especially when f = apply.

4.2 High-level edit language

Without further ado, the edit language we will be analyzing:

e ::= x | e/A :: T | e, e | for x in e return e |
e = e | if e then e else e | element loc {e} {e} |
delete e | insert e into e | let x := e in e

A ::= child | descendant | parent | ancestor

T ::= text | node | q | ∗

Here we assume an infinite supply of variables x, and recall that q is the
metavariable of choice for node names. This language should look reasonable
to anybody familiar with XQuery (or its update-enabled cousin XQuery! [11]).

The semantics of this language is given via a relation of the form

Γ ` η; e⇒ η′; ¯̀,

where Γ is an environment mapping variables to values, η and η′ are store
histories, e is an expression, ¯̀ is a value, and values are simply node sequences.
Furthermore, it is an invariant of this relation that η′ is an extension of η, that
is, its base tree is identical, and the edit sequence of η is a prefix of the edit
sequence of η′. The semantics has a few key properties:

• It is syntax-directed; Γ, η, and e are inputs and η′ and ¯̀ are outputs.

• The evaluation order is carefully specified.

• Update operations take effect immediately; queries evaluated after updates
see the updated data.
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We present only two of the evaluation rules – to give their flavor. The ex-
pression sequencing rule highlights the evaluation ordering; we will also demon-
strate an update rule to show how these extend the store history. Expression
sequencing is quite simple: we evaluate the first expression, perform any result-
ing updates, then evaluate the second expression in the updated tree:

Γ ` η0; e1 ⇒ η1; ¯̀

Γ ` η1; e2 ⇒ η2; ¯̀′

Γ ` η0; e1, e2 ⇒ η2; ¯̀, ¯̀′

Here, ¯̀, ¯̀′ is the concatenation of the two sequences. The delete operation
behaves this way:

Γ ` η0; e⇒ η1; ¯̀

Γ ` η0; delete e⇒ η1,deletee(¯̀); 〈〉

That is, delete evolves by first evaluating its argument to a sequence of nodes,
then disconnecting all of those nodes. The remaining rules are similar; the one
additional thing worth mentioning is that rules that result in new nodes pick
fresh labels for them.

4.3 Path analysis

The static analysis of edits written in this language will proceed by identifying
what paths the edit affects. We define paths as follows:

p ::= ε | loc | p|p | p/A :: T

These paths are given the standard meaning by a selection function JpKd pa-
rameterized by the data that the path is indexing. (We’ll skip the definition of
this function.) We will say p ⊂ p′ when JpKd ⊂ Jp′Kd for all d. We also define a
prefix function:

pref (ε) = ε

pref (loc) = ε

pref (p|q) = pref (p)|pref (q)

pref (p/a :: t) = p

A path is prefix-closed when pref (p) ⊂ p.
The goal now is to analyze a high-level edit, identifying paths that it accesses

and updates. Actually, we will need to settle for something a bit weaker: the
existence of a conditional means that we cannot in general get this exactly right
without referring to the data. So our static analysis will be somewhat conser-
vative, in that it may report more accesses and updates than would actually
happen on any data. At worst, this will cause us to conclude that some edits do
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not commute, even when they do. Thus, we may miss a potential optimization
opportunity – but we will not have to sacrifice correctness!

Our analysis will be in the form of a syntax-directed inductive relation of
the following form:

∆ ` e⇒ pr; pa; pu

Here, ∆ is an environment (much like Γ in the dynamic semantics) mapping
variable names to paths. The inputs are ∆ and e, a high-level edit, and the
outputs are the three paths pr of returned nodes, pa of accessed nodes, and pu
of updated nodes. It is an invariant of this relation that pa is prefix-closed; to
maintain this invariant, we will define the prefix-closure function pref ∗(p):

pref ∗(p) =

{
p p is prefix-closed

pref ∗(p|pref (p)) otherwise

It is fairly easy to show that this is well-defined (that is, that it terminates).
Many of the rules are straightforward, simply merging the accessed and

updated paths from each subterm:

(x 7→ p) ∈ ∆

∆ ` x⇒ p; ε; ε

∆ ` e⇒ pr; pa; pu
∆ ` e′ ⇒ p′r; p

′
a; p′u

∆ ` e, e′ ⇒ pr|p′r; pa|p′a; pu|p′u

∆ ` e⇒ pr; pa; pu
∆ ` e′ ⇒ p′r; p

′
a; p′u

∆ ` element loc {e} {e′} ⇒ loc; pa|p′a; pu|p′u

∆ ` e⇒ pr; pa; pu
∆, x 7→ pr ` e′ ⇒ p′r; p

′
a; p′u

∆ ` let x := e in e′ ⇒ p′r; pa|p′a; pu|p′u

∆ ` e⇒ pr; pa; pu

∆ ` e/a :: t⇒ pr/a :: t; pref ∗(pr/a :: t)|pa; pu

Others deserve a bit more discussion. The rule for for in fact only analyzes
the body of the iteration once. This works out because the binding in ∆ is
bound to a path specifying many nodes; any uses of the variable in the body of
the loop will be instantiated with a path referring to all the nodes that would
be iterated over.

∆ ` e⇒ pr; pa; pu
∆, x 7→ pr ` e′ ⇒ p′r; p

′
a; p′u

∆ ` for x in e return e′ ⇒ p′r; pa|p′a; pu|p′u
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The rule for if brings us to the main point of approximation involved in the
analysis. The static analysis has no way of telling in general which branch of the
conditional we will take. To handle this, we simply report any paths accessed
or updated by either branch.

∆ ` e⇒ r; a;u
∆ ` et ⇒ rt; at;ut

∆ ` ef ⇒ rf ; af ;uf

∆ ` if e then et else ef ⇒ r|rt|rf ; a|at|af ;u|ut|uf

Since deleting a node affects the semantics of all paths for which that node is a
prefix, we must add all descendants to the list of updated paths when doing a
delete. A similar comment applies to insertions.

∆ ` e⇒ pr; pa; pu

∆ ` delete e⇒ ε; pa; pu|pr|pr/descendant :: ∗

∆ ` e⇒ pr; pa; pu
∆ ` e′ ⇒ p′r; p

′
a; p′u

∆ ` insert e into e′ ⇒
ε; pa|p′a|pref ∗(pr/descendant :: ∗); pu|p′u|p′r|p′r/descendant :: ∗

4.4 Commutativity

Before defining commutativity and stating the theorem that we can prove about
it, we make one additional observation about the path analysis from above.
Because paths rely critically on exactly what edges are available, we must be
wary of anything that can delete edges. To ensure that paths generated by the
analysis can reach the nodes that they identified at the time they were created,
we should make sure that all the edges available at path-creation time are still
available at path-evaluation time. We therefore define a conservative application
function capply, which behaves much like apply on all but deletee edits:

capply(e, d) =

{
d ∃E.e = deletee(E)

apply(e, d) otherwise

Then we will define containment for paths and path environments.

Definition 8. We will say ¯̀ ⊂η p (pronounced “p contains ¯̀ in history η”)
when ¯̀⊂ JpKcapply(η). Similarly, Γ ⊂η ∆ if Γ(x) ⊂η ∆(x) for all x.

Finally, we can define commutativity. We will say two expressions commute
when we can apply them in either order, resulting in identically updated trees
and returning node sequences that differ only in order.

Definition 9. We write e↔∆ e′ if for all η and Γ such that Γ ⊂η ∆, we have
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Γ ` η; e, e′ ⇒ η1; ¯̀

Γ ` η; e′, e⇒ η2; ¯̀′

capply(η1) = capply(η2) ∧ bag(¯̀) = bag(¯̀′)

We can now state the main theorem:

Theorem 1. Suppose that all of the following are true:

∆ ` e⇒ pr; pa; pu

∆ ` e′ ⇒ p′r; p
′
a; p′u

pu#p′a

p′u#pa

pu#p′u

Then e↔∆ e′.

4.5 Discussion

It is clear that the high-level language discussed here was designed for human
production (and consumption). For that purpose, it has some very nice proper-
ties. The approach seems fairly flexible regarding exactly what operations are
available in the high-level language and the semantics of these operations; for
example, switching to a snapshot semantics should be possible with a bit of
extra work. Moreover, the analysis itself should be simple enough to implement
quickly (even though the techniques required to prove the desired properties get
a bit hairy). All told, this approach seems much better suited to databases than
the previous two on all the criteria.

There are some lessons to be learned here for revision control systems and
text editors, as well. It probably is not straightforward to roll back changes or
compute minimal edits in this language–at the very least, these problems were
not discussed here–but there are other attractive features. The commutativity
analysis discussed here may be useful in revision control systems for reconcil-
ing changes made in parallel; some analysis of this form, or perhaps greatly
simplified, that guarantees that edits can be swapped regardless of the data
they operate on would be quite helpful in that domain. Similarly, there may
be something to be said about relocating changes within a text editor’s edit
history.

5 Conclusion

We have now seen a variety of approaches to the problem of representing ed-
its. These have ranged from the very low-level, free-form, set-based foundations
to high-level, expressive query and update languages. In the introduction, we
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patch triples moves/copies XQuery-like
rolling back yes yes no
detecting changes no yes no
reconciling parallel changes partial no maybe
tracking provenance yes no maybe
rolling back (again) yes yes no
human readability no partial yes
relocating changes partial maybe maybe
human writability no no yes
compact representation no yes yes
provisions for concurrency no no partial

Figure 6: Success of the three approaches

suggested some possible success criteria for these languages; Figure 6 summa-
rizes the comments above with regards to these criteria. Cells marked “partial”
indicate that the approach is not ideal for that criterion, but that it at least
gets part way to achieving the goal associated with that criterion. Cells with
“maybe”, on the other hand, indicate that the success of that approach on that
criterion are unclear, and that some further thought would be needed to clarify.
None of the approaches are a perfect match for any of the applications under
consideration.

For the domain of revision control, the best approach seems to be to take
patch triples and extend it with some of the lessons learned from the change de-
tection paper. Even doing so, there is more to be said in the realm of reconciling
parallel changes by different authors. The direction forward likely involves some
careful thought about adding facts that can let us view a repository as more
structured than just a set. (For example, modeling Subversion might involve
giving a linear ordering for the patches, and modeling git might involve attach-
ing the patches to nodes of a DAG.) For text editors, the low-level language of
Section 3 seems like a reasonable baseline to begin extending. An investigation
of how exactly to support change relocation would make it a long way towards
the needs of a text editor. Finally, the XQuery-like language seems to be the
best fit of the three we examined for XML-backed databases. (This should be
no surprise, recalling that the other languages were designed for significantly
different applications.)
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[15] Andres Löh, Wouter Swierstra, and Daan Leijen. A Principled Approach
to Version Control.

24



[16] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling object, re-
lations and XML in the .NET framework. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, page
706. ACM, 2006.

[17] J. Minker. Foundations of deductive databases and logic programming.
1987.
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